Analysis on electrical and optical properties of nitrogen incorporated amorphous carbon prepared by aerosol-assisted CVD method

Author(s):  
A. N. Fadzilah ◽  
K. Dayana ◽  
L. N. Ismail ◽  
M. Rusop
2004 ◽  
Vol 18 (18) ◽  
pp. 987-1001 ◽  
Author(s):  
M. RUSOP ◽  
S. ADHIKARI ◽  
A. M. M. OMER ◽  
S. ADHIKARY ◽  
H. UCHIDA ◽  
...  

The effects of annealing temperature on the optical properties of nitrogenated amorphous carbon (a-C:N) films grown on quartz substrates by a novel surface wave microwave plasma chemical vapor deposition (SWMP-CVD) method are reported. The thickness, optical, structural and bonding properties of the as-grown and anneal-treated a-C:N films were measured and compared. The film thickness decreased rapidly with increasing annealing temperature above 350°C. A wide range of optical absorption characteristics is observed, depending on the annealing temperature. The optical band gap of as-grown a-C:N films is approximately 2.8 eV, gradually decreasing to 2.5 eV for the films anneal-treated at 300°C, and beyond that decreasing rapidly down to 0.9 eV at 500°C. The Raman and FTIR spectroscopy measurements have shown that the structural and composition of the films can be tuned by optimizing the annealing temperature. The change of optical, structural and bonding properties of SWMP-CVD-grown a-C:N films with higher annealing temperature was attributed to the fundamental changes in the bonding and band structures of the films.


1998 ◽  
Vol 7 (2-5) ◽  
pp. 472-476 ◽  
Author(s):  
B. Kleinsorge ◽  
A. Ilie ◽  
M. Chhowalla ◽  
W. Fukarek ◽  
W.I. Milne ◽  
...  

1996 ◽  
Vol 446 ◽  
Author(s):  
Kwang Bae Lee ◽  
Duck Jung Lee ◽  
Yong Woo Shin

AbstractWe have investigated the changes in the temperature dependence of the dc conductivity and the optical gap with nitrogen content in amorphous carbon nitride (a-C:N) films, in order to find the effect of nitrogen doping on the electrical and optical properties of amorphous carbon films. Specimens were deposited onto borosilicate glass substrates by the rf magnetron sputtering method using Ar and N2 as a sputtering gas and a reactive one, respectively. The values of the activation energy of the dc conductivity, Ea, of these films are 0.3∼0.8 eV and those of the optical gap, Eg, are 0.8∼ 1.4 eV. Both values decrease with increasing nitrogen content, which is due to the increase of the concentration or average size of sp islands segregated into the sp matrix by nitrogen doping. From the investigation of the behavior of both Ea and Eg in accordance with the nitrogen content, we discuss the three subsequent shifts of band edge and Fermi level, accompanied with the subsequent changes of microstructure in a-CN films by nitrogen doping.


Sign in / Sign up

Export Citation Format

Share Document