Resilient Recovery Features of Offshore Wind Farm with Maintenance Service

Author(s):  
Bartosz Skobiei ◽  
Arto Niemi ◽  
Nikolai Kulev ◽  
Frank Sill Torres
Author(s):  
Bartosz Skobiej ◽  
Arto Niemi

AbstractThis article discusses the aspect of modeling weather conditions in marine environment for implementation in the offshore wind farm domain. It is clear that harsh sea weather conditions influence many characteristics of any offshore installation. The accessibility to the infrastructure, maintenance procedures, failure ratios of components, energy provision levels, or utilization of vessels—are the examples of weather-related issues connected to the offshore wind industry. Regarding the growing popularity of digital twin methodology, authors present a novel view to generate weather data with copula-based method. The results obtained are compared to selected historical data and implemented into the maintenance model. The selected indicators of maintenance service are used for usability assessment of proposed copula-based method.


2016 ◽  
Vol 49 (28) ◽  
pp. 156-161 ◽  
Author(s):  
Irene Sagarna ◽  
Jone Uribetxebarria ◽  
Eduardo Castellano ◽  
Asier Erguido

2019 ◽  
Vol 139 (4) ◽  
pp. 259-268
Author(s):  
Effat Jahan ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
...  

2019 ◽  
Vol 2019 (17) ◽  
pp. 3848-3854
Author(s):  
Samir Milad Alagab ◽  
Sarath Tennakoon ◽  
Chris Gould

2021 ◽  
pp. 107532
Author(s):  
Muhammet Deveci ◽  
Ender Özcan ◽  
Robert John ◽  
Dragan Pamucar ◽  
Himmet Karaman

2021 ◽  
Vol 1754 (1) ◽  
pp. 012153
Author(s):  
YAN Quanchun ◽  
GU Wen ◽  
LIU Yanan ◽  
LI Chenglong ◽  
WU Tao

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2058
Author(s):  
Zheren Zhang ◽  
Yingjie Tang ◽  
Zheng Xu

Offshore wind power has great development potential, for which the key factors are reliable and economical wind farms and integration systems. This paper proposes a medium-frequency wind farm and MMC-HVDC integration system. In the proposed scheme, the operating frequency of the offshore wind farm and its power collection system is increased from the conventional 50/60 Hz rate to the medium-frequency range, i.e., 100–400 Hz; the offshore wind power is transmitted to the onshore grid via the modular multilevel converter-based high-voltage direct current transmission (MMC-HVDC). First, this paper explains the principles of the proposed scheme in terms of the system topology and control strategy aspects. Then, the impacts of increasing the offshore system operating frequency on the main parameters of the offshore station are discussed. As the frequency increases, it is shown that the actual value of the electrical equipment, such as the transformers, the arm inductors, and the SM capacitors of the rectifier MMC, can be reduced, which means smaller platforms are required for the step-up transformer station and the converter station. Then, the system operation characteristics are analyzed, with the results showing that the power losses in the system increase slightly with the increase of the offshore AC system frequency. Based on time domain simulation results from power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC), it is noted that the dynamic behavior of the system is not significantly affected with the increase of the offshore AC system frequency in most scenarios. In this way, the technical feasibility of the proposed offshore platform miniaturization technology is proven.


Sign in / Sign up

Export Citation Format

Share Document