From reversible logic to quantum circuits: Logic design for an emerging technology

Author(s):  
Robert Wille ◽  
Anupam Chattopadhyay ◽  
Rolf Drechsler
Author(s):  
Shaveta Thakral ◽  
Dipali Bansal

Energy loss is a big challenge in digital logic design primarily due to impending end of Moore’s Law. Increase in power dissipation not only affects portability but also overall life span of a device. Many applications cannot afford this loss. Therefore, future computing will rely on reversible logic for implementation of power efficient and compact circuits. Arithmetic and logic unit (ALU) is a fundamental component of all processors and designing it with reversible logic is tedious. The various ALU designs using reversible logic gates exist in literature but operations performed by them are limited. The main aim of this paper is to propose a new design of reversible ALU and enhance number of operations in it. This paper critically analyzes proposed ALU with existing designs and demonstrates increase in functionality with 56% reduction in gates, 17 % reduction in garbage lines, 92 % reduction in ancillary lines and 53 % reduction in quantum cost. The proposed ALU design is coded in Verilog HDL, synthesized and simulated using EDA (Electronic Design Automation) tool-Xilinx ISE design suit 14.2. RCViewer+ tool has been used to validate quantum cost of proposed design.


2010 ◽  
Vol 1 (4) ◽  
pp. 25-41 ◽  
Author(s):  
Robert Wille ◽  
Rolf Drechsler

Reversible logic became a promising alternative to traditional circuits because of its applications in emerging technologies such as quantum computing, low-power design, DNA computing, or nanotechnologies. As a result, synthesis of the respective circuits is an intensely studied topic. However, most synthesis methods are limited, because they rely on a truth table representation of the function to be synthesized. In this paper, the authors present a synthesis approach that is based on Binary Decision Diagrams (BDDs). The authors propose a technique to derive reversible or quantum circuits from BDDs by substituting all nodes of the BDD with a cascade of Toffoli or quantum gates, respectively. Boolean functions containing more than a hundred of variables can efficiently be synthesized. More precisely, a circuit can be obtained from a given BDD using an algorithm with linear worst case behavior regarding run-time and space requirements. Furthermore, using the proposed approach, theoretical results known from BDDs can be transferred to reversible circuits. Experiments show better results (with respect to the circuit cost) and a significantly better scalability in comparison to previous synthesis approaches.


Sign in / Sign up

Export Citation Format

Share Document