logic design
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 114)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Na Bai ◽  
Hang Li ◽  
Jiming Lv ◽  
Shuai Yang ◽  
Yaohua Xu

Under IEEE-754 standard, for the current situation of excessive time and power consumption of multiplication operations in single-precision floating-point operations, the expanded boothwallace algorithm is used, and the partial product caused by booth coding is rounded and predicted with the symbolic expansion idea, and the partial product caused by single-precision floating-point multiplication and the accumulation of partial products are optimized, and the flowing water is used to improve the throughput. Based on this, a series of verification and synthesis simulations are performed using the SMIC-7 nm standard cell process. It is verified that the new single-precision floating-point multiplier can achieve a smaller power share compared to the conventional single-precision floating-point multiplier.


Author(s):  
Sarah L. Harris ◽  
David Harris

Author(s):  
Sarah L. Harris ◽  
David Harris

2021 ◽  
Author(s):  
R. Sornalatha ◽  
N. Janakiraman ◽  
K. Balamurugan ◽  
Arun Kumar Sivaraman ◽  
Rajiv Vincent ◽  
...  

In this work, we obtain an area proficient composite field arithmetic Advanced Encryption Standard (AES) Substitution (S) byte and its inverse logic design. The size of this design is calculated by the number of gates used for hardware implementation. Most of the existing AES Substitution box hardware implementation uses separate Substitution byte and its inverse hardware structures. But we implement the both in the same module and a control signal is used to select the substitution byte for encryption operation and its inverse for the decryption operation. By comparing the gate utilization of the previous AES S–Box implementation, we reduced the gate utilization up to 5% that is we take only 78 EX-OR gates and 36 AND gates for implementing the both Substitution byte and its inverse. While implementing an AES algorithm in circuitry or programming, it is liable to be detected by hackers using any one of the side channel attacks. Data to be added with a random bit sequence to prevent from the above mentioned side channel attacks.


2021 ◽  
Vol 183 ◽  
pp. 108125
Author(s):  
Chhandak Mukherjee ◽  
Arnaud Poittevin ◽  
Ian O'Connor ◽  
Guilhem Larrieu ◽  
Cristell Maneux

Sign in / Sign up

Export Citation Format

Share Document