Combining multiple, inexpensive GPS receivers to improve accuracy and reliability

Author(s):  
Daniel K. Schrader ◽  
Byung-Cheol Min ◽  
Eric T. Matson ◽  
J. Eric Dietz
2019 ◽  
Author(s):  
Holly Oemke ◽  
Margaret Pain ◽  
Daniel Charytonowicz ◽  
Leslie Schlachter ◽  
Anthony Costa ◽  
...  

Author(s):  
Ramya Yeluri ◽  
Ravishankar Thirugnanasambandam ◽  
Cameron Wagner ◽  
Jonathan Urtecho ◽  
Jan M. Neirynck

Abstract Laser voltage probing (LVP) has been extensively used for fault isolation over the last decade; however fault isolation in practice primarily relies on good-to-bad comparisons. In the case of complex logic failures at advanced technology nodes, understanding the components of the measured data can improve accuracy and speed of fault isolation. This work demonstrates the use of second harmonic and thermal effects of LVP to improve fault isolation with specific examples. In the first case, second harmonic frequency is used to identify duty cycle degradation. Monitoring the relative amplitude of the second harmonic helps identify minute deviations in the duty cycle with a scan over a region, as opposed to collecting multiple high resolution waveforms at each node. This can be used to identify timing degradation such as signal slope variation as well. In the second example, identifying abnormal data at the failing device as temperature dependent effect helps refine the fault isolation further.


Author(s):  
John S. Miller ◽  
Duane Karr

Motor vehicle crash countermeasures often are selected after an extensive data analysis of the crash history of a roadway segment. The value of this analysis depends on the accuracy or precision with which the crash itself is located. yet this crash location only is as accurate as the estimate of the police officer. Global Positioning System (GPS) technology may have the potential to increase data accuracy and decrease the time spent to record crash locations. Over 10 months, 32 motor vehicle crash locations were determined by using both conventional methods and hand-held GPS receivers, and the timeliness and precision of the methods were compared. Local crash data analysts were asked how the improved precision affected their consideration of potential crash countermeasures with regard to five crashes selected from the sample. On average, measuring a crash location by using GPS receivers added up to 10 extra minutes, depending on the definition of the crash location, the technology employed, and how that technology was applied. The average difference between conventional methods of measuring the crash location and either GPS or a wheel ranged from 5 m (16 ft) to 39 m (130 ft), depending on how one defined the crash location. Although there are instances in which improved precision will affect the evaluation of crash countermeasures, survey respondents and the literature suggest that problems with conventional crash location methods often arise from human error, not a lack of precision inherent in the technology employed.


1999 ◽  
Author(s):  
P. T. Capozza ◽  
B. J. Holland ◽  
T. M. Hopkinson ◽  
C. Li ◽  
D. Moulin ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7007
Author(s):  
Janusz P. Paplinski ◽  
Aleksandr Cariow

This article presents an efficient algorithm for computing a 10-point DFT. The proposed algorithm reduces the number of multiplications at the cost of a slight increase in the number of additions in comparison with the known algorithms. Using a 10-point DFT for harmonic power system analysis can improve accuracy and reduce errors caused by spectral leakage. This paper compares the computational complexity for an L×10M-point DFT with a 2M-point DFT.


Memory ◽  
2021 ◽  
pp. 1-9
Author(s):  
Marina C. Wimmer ◽  
Ben Whalley ◽  
Timothy J. Hollins

Sign in / Sign up

Export Citation Format

Share Document