Numerical Simulation of Steady Flow Inside a Vascular Graft and Comparison with Experimental Measurements

2005 ◽  
Author(s):  
F. Loth ◽  
Kai Kang
2000 ◽  
Author(s):  
Fahua Gu ◽  
Abraham Engeda ◽  
Mike Cave ◽  
Jean-Luc Di Liberti

Abstract A numerical simulation is performed on a single stage centrifugal compressor using the commercially available CFD software, CFX-TASCflow. The steady flow is obtained by circumferentially averaging the exit fluxes of the impeller. Three runs are made at design condition and off-design conditions. The predicted performance is in agreement with experimental data. The flow details inside the stationary components are investigated, resulting in a flow model describing the volute/diffuser interaction at design and off-design conditions. The recirculation and twin vortex structure are found to explain the volute loss increase at lower and higher mass flows, respectively.


2004 ◽  
Vol 70 (694) ◽  
pp. 1618-1625 ◽  
Author(s):  
Tomokazu NOMURA ◽  
Yasushi TAKAHASHI ◽  
Chikashi TAKEDA ◽  
Tsuneaki ISHIMA ◽  
Tomio OBOKATA

2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1877-1884 ◽  
Author(s):  
Diego Alarcón ◽  
Eduardo. Balvís ◽  
Ricardo Bendaña ◽  
Alberto Conejero ◽  
de Fernández ◽  
...  

We present a detailed study of heating and cooling processes in LED luminaires with passive heat sinks. Our analysis is supported by numerical simulations as well as experimental measurements, carried on commercial systems used for outdoor lighting. We have focused our analysis on the common case of a single LED source in thermal contact with an aluminum passive heat sink, obtaining an excellent agreement with experimental measurements and the numerical simulations performed. Our results can be easily expanded, without loss of generality, to similar systems.


2021 ◽  
Vol 105 (1) ◽  
pp. 549-559
Author(s):  
Petr Vyroubal ◽  
Tomas Kazda ◽  
Martin Mačák

Computer simulations today play an important role in the field of science and technology. The same is true in the field of electrochemistry, where they are used mainly to model the charging and discharging processes in various types of batteries, at the various loads and temperature processes associated with it. This article deals with the possibility of modeling thermal abuse, which subsequently leads to the thermal runaway effect in a lithium ion battery pack. The simulation is accompanied by experimental measurements and comparison of the original results from the real test and simulation.


Author(s):  
Massimo Paroncini ◽  
Barbara Calcagni ◽  
Augusto Manni ◽  
Paolo Zazzini

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lijuan Qian ◽  
Shaobo Song ◽  
Xiaolu Li

A new spray approach is proposed to overcome the disadvantages of the traditional single-orifice nozzle, such as uneven coatings, overspray, and low efficiency. Both the experimental measurements and numerical simulation are used to investigate the spray characteristics of the multiorifice nozzle. The results show the new nozzle structure is able to disperse the particles in a wider regime and reduce the central pressure. It is an effective way to produce uniform ultrafine coatings.


Sign in / Sign up

Export Citation Format

Share Document