Novel Decoupling Control and Eigenstructure Assignment Strategies for Rigid Active Magnetic Bearing Rotor System

Author(s):  
Yuanwen Li ◽  
Changsheng Zhu
2021 ◽  
Vol 104 (1) ◽  
pp. 103-123
Author(s):  
Xiaoshen Zhang ◽  
Zhe Sun ◽  
Lei Zhao ◽  
Xunshi Yan ◽  
Jingjing Zhao ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Liu ◽  
Shuaishuai Ming ◽  
Siyao Zhao ◽  
Jiyuan Han ◽  
Yaxin Ma

In this paper, in order to solve the problem of unbalance vibration of rigid rotor system supported by the active magnetic bearing (AMB), automatic balancing method is applied to suppress the unbalance vibration of the rotor system. Firstly, considering the dynamic and static imbalance of the rotor, the detailed dynamic equations of the AMB-rigid rotor system are established according to Newton’s second law. Then, in order to rotate the rotor around the inertia axis, the notch filter with phase compensation is used to eliminate the synchronous control current. Finally, the variable-step fourth-order Runge–Kutta iteration method is used to solve the unbalanced vibration response of the rotor system in MATLAB simulation. The effects of the rotational speed and phase compensation angle on the unbalanced vibration control are analysed in detail. It is found that the synchronous control currents would increase rapidly with the increase of rotational speed if the unbalance vibration cannot be controlled. When the notch filter with phase shift is used to balance the rotor system automatically, the control current is reduced significantly. It avoids the saturation of the power amplifier and reduces the vibration response of the rotor system. The rotor system can be stabilized over the entire operating speed range by adjusting the compensation phase of the notch filter. The method in the paper is easy to implement, and the research result can provide theoretical support for the unbalance vibration control of AMB-rotor systems.


Sign in / Sign up

Export Citation Format

Share Document