A comparative study on sampling techniques for handling class imbalance in streaming data

Author(s):  
Hien M. Nguyen ◽  
Eric W. Cooper ◽  
Katsuari Kamei
Author(s):  
S. Priya ◽  
R. Annie Uthra

AbstractIn present times, data science become popular to support and improve decision-making process. Due to the accessibility of a wide application perspective of data streaming, class imbalance and concept drifting become crucial learning problems. The advent of deep learning (DL) models finds useful for the classification of concept drift in data streaming applications. This paper presents an effective class imbalance with concept drift detection (CIDD) using Adadelta optimizer-based deep neural networks (ADODNN), named CIDD-ADODNN model for the classification of highly imbalanced streaming data. The presented model involves four processes namely preprocessing, class imbalance handling, concept drift detection, and classification. The proposed model uses adaptive synthetic (ADASYN) technique for handling class imbalance data, which utilizes a weighted distribution for diverse minority class examples based on the level of difficulty in learning. Next, a drift detection technique called adaptive sliding window (ADWIN) is employed to detect the existence of the concept drift. Besides, ADODNN model is utilized for the classification processes. For increasing the classifier performance of the DNN model, ADO-based hyperparameter tuning process takes place to determine the optimal parameters of the DNN model. The performance of the presented model is evaluated using three streaming datasets namely intrusion detection (NSL KDDCup) dataset, Spam dataset, and Chess dataset. A detailed comparative results analysis takes place and the simulation results verified the superior performance of the presented model by obtaining a maximum accuracy of 0.9592, 0.9320, and 0.7646 on the applied KDDCup, Spam, and Chess dataset, respectively.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 786 ◽  
Author(s):  
T Sajana ◽  
M R.Narasingarao

Malaria disease is one whose presence is rampant in semi urban and non-urban areas especially resource poor developing countries. It is quite evident from the datasets like malaria, dengue, etc., where there is always a possibility of having more negative patients (non-occurrence of the disease) compared to patients suffering from disease (positive cases). Developing a model based decision support system with such unbalanced datasets is a cause of concern and it is indeed necessary to have a model predicting the disease quite accurately. Classification of imbalanced malaria disease data become a crucial task in medical application domain because most of the conventional machine learning algorithms are showing very poor performance to classify whether a patient is affected by malaria disease or not. In imbalanced data, majority (unaffected) class samples are dominates the minority (affected) class samples leading to class imbalance. To overcome the nature of class imbalance problem, balancing the data samples is the best solution which produces the better accuracy in classification of minority samples. The aim of this research is to propose a comparative study on classifying the imbalanced malaria disease data using Naive Bayesian classifier in different environments like weka and using an R-language. We present here, clinical descriptive study on 165 patients of different age group people collected at medical wards of Narasaraopet from 2014-17. Synthetic Minority Oversampling Technique (SMOTE) technique has been used to balance the class distribution and then we performed a comparative study on the dataset using Naïve Bayesian algorithm in various platforms. Out of balanced class distribution data, 70% data was given to train the Naive Bayesian algorithm and the rest of the data was used for testing the model for both weka and R programming environments. Experimental results have indicated that, classification of malaria disease data in weka environment has highest accuracy of 88.5% than the Naive Bayesian algorithm accuracy of 87.5% using R programming language. The impact of vector borne disease is very high in medical applications. Prediction of disease like malaria is an hour of the need and this is possible only with a suitable model for a given dataset. Hence, we have developed a model with Naive Bayesian algorithm is used for current research.    


Author(s):  
Ranjan Kumar Behera ◽  
Sushree Das ◽  
Monalisa Jena ◽  
Santanu Kumar Rath ◽  
Bibhudatta Sahoo

2009 ◽  
Vol 36 (7) ◽  
pp. 410-414 ◽  
Author(s):  
Avner SHEMER ◽  
Batya DAVIDOVICI ◽  
Marcelo H. GRUNWALD ◽  
Henri TRAU ◽  
Boaz AMICHAI

Sign in / Sign up

Export Citation Format

Share Document