Deep Transfer Fault Diagnosis Using Digital Twin and Generative Adversarial Network

Author(s):  
Xiaodong Wang ◽  
Feng Liu ◽  
Dongdong Zhao
PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246905
Author(s):  
Chunming Wu ◽  
Zhou Zeng

Rolling bearing fault diagnosis is one of the challenging tasks and hot research topics in the condition monitoring and fault diagnosis of rotating machinery. However, in practical engineering applications, the working conditions of rotating machinery are various, and it is difficult to extract the effective features of early fault due to the vibration signal accompanied by high background noise pollution, and there are only a small number of fault samples for fault diagnosis, which leads to the significant decline of diagnostic performance. In order to solve above problems, by combining Auxiliary Classifier Generative Adversarial Network (ACGAN) and Stacked Denoising Auto Encoder (SDAE), a novel method is proposed for fault diagnosis. Among them, during the process of training the ACGAN-SDAE, the generator and discriminator are alternately optimized through the adversarial learning mechanism, which makes the model have significant diagnostic accuracy and generalization ability. The experimental results show that our proposed ACGAN-SDAE can maintain a high diagnosis accuracy under small fault samples, and have the best adaptation performance across different load domains and better anti-noise performance.


Author(s):  
Huifang Li ◽  
◽  
Rui Fan ◽  
Qisong Shi ◽  
Zijian Du

Recent advancements in machine learning and communication technologies have enabled new approaches to automated fault diagnosis and detection in industrial systems. Given wide variation in occurrence frequencies of different classes of faults, the class distribution of real-world industrial fault data is usually imbalanced. However, most prior machine learning-based classification methods do not take this imbalance into consideration, and thus tend to be biased toward recognizing the majority classes and result in poor accuracy for minority ones. To solve such problems, we propose a k-means clustering generative adversarial network (KM-GAN)-based fault diagnosis approach able to reduce imbalance in fault data and improve diagnostic accuracy for minority classes. First, we design a new k-means clustering algorithm and GAN-based oversampling method to generate diverse minority-class samples obeying the similar distribution to the original minority data. The k-means clustering algorithm is adopted to divide minority-class samples into k clusters, while a GAN is applied to learn the data distribution of the resulting clusters and generate a given number of minority-class samples as a supplement to the original dataset. Then, we construct a deep neural network (DNN) and deep belief network (DBN)-based heterogeneous ensemble model as a fault classifier to improve generalization, in which DNN and DBN models are trained separately on the resulting dataset, and then the outputs from both are averaged as the final diagnostic result. A series of comparative experiments are conducted to verify the effectiveness of our proposed method, and the experimental results show that our method can improve diagnostic accuracy for minority-class samples.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lei Wang ◽  
Qian Li ◽  
Jin Qin

Error diagnosis and detection have become important in modern production due to the importance of spinning equipment. Artificial neural network pattern recognition methods are widely utilized in rotating equipment fault detection. These methods often need a large quantity of sample data to train the model; however, sample data (especially fault samples) are uncommon in engineering. Preliminary work focuses on dimensionality reduction for big data sets using semisupervised methods. The rotary machine’s polar coordinate signal is used to build a GAN network structure. ANN and tiny samples are utilized to identify DCGAN model flaws. The time-conditional generative adversarial network is proposed for one-dimensional vibration signal defect identification under data imbalance. Finally, auxiliary samples are gathered under similar conditions, and CCNs learn about target sample characteristics. Convolutional neural networks handle the problem of defect identification with small samples in different ways. In high-dimensional data sets with nonlinearities, low fault type recognition rates and fewer marked fault samples may be addressed using kernel semisupervised local Fisher discriminant analysis. The SELF method is used to build the optimum projection transformation matrix from the data set. The KNN classifier then learns low-dimensional features and detects an error kind. Because DCGAN training is unstable and the results are incorrect, an improved deep convolutional generative adversarial network (IDCGAN) is proposed. The tests indicate that the IDCGAN generates more real samples and solves the problem of defect identification in small samples. Time-conditional generation adversarial network data improvement lowers fault diagnosis effort and deep learning model complexity. The TCGAN and CNN are combined to provide superior fault detection under data imbalance. Modeling and experiments demonstrate TCGAN’s use and superiority.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Gang Xiang ◽  
Kun Tian

In recent years, deep learning methods which promote the accuracy and efficiency of fault diagnosis task without any extra requirement of artificial feature extraction have elicited the attention of researchers in the field of manufacturing industry as well as aerospace. However, the problems that data in source and target domains usually have different probability distributions because of different working conditions and there are insufficient labeled or even unlabeled data in target domain significantly deteriorate the performance and generalization of deep fault diagnosis models. To address these problems, we propose a novel Wasserstein Generative Adversarial Network with Gradient Penalty- (WGAN-GP-) based deep adversarial transfer learning (WDATL) model in this study, which exploits a domain critic to learn domain invariant feature representations by minimizing the Wasserstein distance between the source and target feature distributions through adversarial training. Moreover, an improved one-dimensional convolutional neural network- (CNN-) based feature extractor which utilizes exponential linear units (ELU) as activation functions and wide kernels is designed to automatically extract the latent features of raw time-series input data. Then, the fault model classifier trained in one working condition (source domain) with sufficient labeled samples could be generalized to diagnose data in other working conditions (target domain) with insufficient labeled samples. Experiments on two open datasets demonstrate that our proposed WDATL model outperforms most of the state-of-the-art approaches on transfer diagnosis tasks under diverse working circumstances.


Sign in / Sign up

Export Citation Format

Share Document