Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty

2020 ◽  
Vol 396 ◽  
pp. 487-494 ◽  
Author(s):  
Xin Gao ◽  
Fang Deng ◽  
Xianghu Yue
2020 ◽  
Vol 10 (17) ◽  
pp. 5765
Author(s):  
Qiang Fu ◽  
Huawei Wang

In real engineering scenarios, it is difficult to collect adequate cases with faulty conditions to train an intelligent diagnosis system. To alleviate the problem of limited fault data, this paper proposes a fault diagnosis method combining a generative adversarial network (GAN) and stacked denoising auto-encoder (SDAE). The GAN approach augments the limited real measured data, especially in faulty conditions. The generated data are then transformed into the SDAE fault diagnosis model. The GAN-SDAE approach improves the accuracy of the fault diagnosis from the vibration signals, especially when the measured samples are few. The usefulness of this method is assessed through two condition-monitoring cases: one is a classic bearing example and the other is a more general gear failure. The results demonstrate that diagnosis accuracy for both cases is above 90% for various working conditions, and the GAN-SDAE system is stable.


Author(s):  
Jinrui Wang ◽  
Baokun Han ◽  
Huaiqian Bao ◽  
Mingyan Wang ◽  
Zhenyun Chu ◽  
...  

As a useful data augmentation technique, generative adversarial networks have been successfully applied in fault diagnosis field. But traditional generative adversarial networks can only generate one category fault signals in one time, which is time-consuming and costly. To overcome this weakness, we develop a novel fault diagnosis method which combines conditional generative adversarial networks and stacked autoencoders, and both of them are built by stacking one-dimensional full connection layers. First, conditional generative adversarial networks is used to generate artificial samples based on the frequency samples, and category labels are adopted as the conditional information to simultaneously generate different category signals. Meanwhile, spectrum normalization is added to the discriminator of conditional generative adversarial networks to enhance the model training. Then, the augmented training samples are transferred to stacked autoencoders for feature extraction and fault classification. Finally, two datasets of bearing and gearbox are employed to investigate the effectiveness of the proposed conditional generative adversarial network–stacked autoencoder method.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4365
Author(s):  
Kwangyong Jung ◽  
Jae-In Lee ◽  
Nammoon Kim ◽  
Sunjin Oh ◽  
Dong-Wook Seo

Radar target classification is an important task in the missile defense system. State-of-the-art studies using micro-doppler frequency have been conducted to classify the space object targets. However, existing studies rely highly on feature extraction methods. Therefore, the generalization performance of the classifier is limited and there is room for improvement. Recently, to improve the classification performance, the popular approaches are to build a convolutional neural network (CNN) architecture with the help of transfer learning and use the generative adversarial network (GAN) to increase the training datasets. However, these methods still have drawbacks. First, they use only one feature to train the network. Therefore, the existing methods cannot guarantee that the classifier learns more robust target characteristics. Second, it is difficult to obtain large amounts of data that accurately mimic real-world target features by performing data augmentation via GAN instead of simulation. To mitigate the above problem, we propose a transfer learning-based parallel network with the spectrogram and the cadence velocity diagram (CVD) as the inputs. In addition, we obtain an EM simulation-based dataset. The radar-received signal is simulated according to a variety of dynamics using the concept of shooting and bouncing rays with relative aspect angles rather than the scattering center reconstruction method. Our proposed model is evaluated on our generated dataset. The proposed method achieved about 0.01 to 0.39% higher accuracy than the pre-trained networks with a single input feature.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


2021 ◽  
Vol 11 (5) ◽  
pp. 2166
Author(s):  
Van Bui ◽  
Tung Lam Pham ◽  
Huy Nguyen ◽  
Yeong Min Jang

In the last decade, predictive maintenance has attracted a lot of attention in industrial factories because of its wide use of the Internet of Things and artificial intelligence algorithms for data management. However, in the early phases where the abnormal and faulty machines rarely appeared in factories, there were limited sets of machine fault samples. With limited fault samples, it is difficult to perform a training process for fault classification due to the imbalance of input data. Therefore, data augmentation was required to increase the accuracy of the learning model. However, there were limited methods to generate and evaluate the data applied for data analysis. In this paper, we introduce a method of using the generative adversarial network as the fault signal augmentation method to enrich the dataset. The enhanced data set could increase the accuracy of the machine fault detection model in the training process. We also performed fault detection using a variety of preprocessing approaches and classified the models to evaluate the similarities between the generated data and authentic data. The generated fault data has high similarity with the original data and it significantly improves the accuracy of the model. The accuracy of fault machine detection reaches 99.41% with 20% original fault machine data set and 93.1% with 0% original fault machine data set (only use generate data only). Based on this, we concluded that the generated data could be used to mix with original data and improve the model performance.


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246905
Author(s):  
Chunming Wu ◽  
Zhou Zeng

Rolling bearing fault diagnosis is one of the challenging tasks and hot research topics in the condition monitoring and fault diagnosis of rotating machinery. However, in practical engineering applications, the working conditions of rotating machinery are various, and it is difficult to extract the effective features of early fault due to the vibration signal accompanied by high background noise pollution, and there are only a small number of fault samples for fault diagnosis, which leads to the significant decline of diagnostic performance. In order to solve above problems, by combining Auxiliary Classifier Generative Adversarial Network (ACGAN) and Stacked Denoising Auto Encoder (SDAE), a novel method is proposed for fault diagnosis. Among them, during the process of training the ACGAN-SDAE, the generator and discriminator are alternately optimized through the adversarial learning mechanism, which makes the model have significant diagnostic accuracy and generalization ability. The experimental results show that our proposed ACGAN-SDAE can maintain a high diagnosis accuracy under small fault samples, and have the best adaptation performance across different load domains and better anti-noise performance.


Sign in / Sign up

Export Citation Format

Share Document