Modeling quality of service vs. Peak Reduction trade-offs in A/C-based Demand-Side Management

Author(s):  
Fabrice Saffre ◽  
Hanno Hildmann ◽  
Sebastien Nicolas
2020 ◽  
Vol 14 (1) ◽  
pp. 144-151 ◽  
Author(s):  
Yanki Aslan ◽  
Jan Puskely ◽  
Antoine Roederer ◽  
Alexander Yarovoy

Author(s):  
Abdelmadjid Recioui

Demand-side management (DSM) is a strategy enabling the power supplying companies to effectively manage the increasing demand for electricity and the quality of the supplied power. The main objectives of DSM programs are to improve the financial performance and customer relations. The idea is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times. The DSM controls the match between the demand and supply of electricity. Another objective of DSM is to maintain the power quality in order to level the load curves. In this chapter, a genetic algorithm is used in conjunction with demand-side management techniques to find the optimal scheduling of energy consumption inside N buildings in a neighborhood. The issue is formulated as multi-objective optimization problem aiming at reducing the peak load as well as minimizing the energy cost. The simulations reveal that the adopted strategy is able to plan the daily energy consumptions of a great number of electrical devices with good performance in terms of computational cost.


Author(s):  
Abdelmadjid Recioui

Demand-side management (DSM) is a strategy enabling the power supplying companies to effectively manage the increasing demand for electricity and the quality of the supplied power. The main objectives of DSM programs are to improve the financial performance and customer relations. The idea is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times. The DSM controls the match between the demand and supply of electricity. Another objective of DSM is to maintain the power quality in order to level the load curves. In this chapter, a genetic algorithm is used in conjunction with demand-side management techniques to find the optimal scheduling of energy consumption inside N buildings in a neighborhood. The issue is formulated as multi-objective optimization problem aiming at reducing the peak load as well as minimizing the energy cost. The simulations reveal that the adopted strategy is able to plan the daily energy consumptions of a great number of electrical devices with good performance in terms of computational cost.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Godiana Hagile Philipo ◽  
Yusufu Abeid Chande Jande ◽  
Thomas Kivevele

Over 17% of the world’s population lack access to electricity, the majority being in rural areas of sub-Saharan Africa and South Asia. Microgrid technologies are a promising solution towards rural and remote area electrification; however, ever-increasing electricity demand remains a big challenge leading to pronounced power outages. Demand-side management is an indispensable tool towards addressing the challenges. This paper employs a mathematical model based on incentives and time-of-use rates to simulate daily power usage pattern of residential customers using data collected from an isolated village Ngurdoto solar microgrid, Arusha, Tanzania. Customer responsiveness on the increase in price was evaluated based on the concept of price elasticity of demand. Using two demand response strategies, namely, load shifting (LS) and scheduled load reduction (SLR), the results reveal that LS can achieve up to 4.87% energy-saving, 19.23% cost-saving, and about 31% and 19% peak reduction and power factor improvement, respectively. SLR method resulted in about 19% energy-saving, 49% cost-saving, and 24% power factor improvement. Thus, the results presented in this study may lead to a more efficient and stable system than the current state in developing countries’ utility.


Author(s):  
D. Sai Kumar

Industrial growth is the back bone for the development of any nation. Industries are mainly dependent on electrical energy. But from the various studies, the sources for electrical energy are decreasing gradually, and in turn, the gap is increasing between the supplier and the load. The solution for this scenario is optimal utilization of resources. To overcome this problem , the concept Demand Side Management (DSM) has emerged in Power System Planning and Management. The principle objective of DSM is mutual understanding between the supplier and the consumer for maximizing benefits and minimizing inconvenience. The aim of this research work is selection and application of appropriate DSM techniques to industrial and domestic loads for peak load management and energy conservation, that is to control the maximum demand during the peak hours and saving the energy by using the energy efficient and intelligent appliances like air conditioners and water heaters. DSM includes techniques like the End Use Equipment Control, the Load Priority Technique, he Peak Clipping & Valley filling, the Differential Tariff and Resizing of the equipment. Depending upon the application, all the techniques may be applied sequentially, or only a few of them can be applied. There is a lot of ambiguity in the selection of DSM techniques, because the application of each DSM technique depends on the case study and the problem associated with the respective case study. After comprehensive understanding of a particular case, a thorough investigation and subsequent data analysis pave the way for the selection of appropriate DSM technique/techniques


Sign in / Sign up

Export Citation Format

Share Document