Relative impact angle control guidance law to intercept maneuvering target

Author(s):  
Hyun-Seung Kim ◽  
Sang-Sup Park ◽  
Chang-Kyung Ryoo
Author(s):  
Xinghe Zhou ◽  
Weihong Wang ◽  
Zhenghua Liu

For the guidance problem of multiple missiles attacking a maneuvering target simultaneously in plane, a novel fixed-time distributed cooperative guidance law with impact angle constraint is designed in this paper. The design process of distributed cooperative guidance law can be roughly divided into two parts. First, based on the nonsingular terminal sliding mode control, a cooperative guidance law on the line-of-sight (LOS) direction is developed, which can guarantee that all missiles hit the maneuvering target simultaneously. Second, another guidance law in normal direction of the LOS direction is designed to achieve the fixed-time convergence of LOS angular rate and LOS angle. Finally, numerical simulations verify the effectiveness of the proposed cooperative guidance law for different engagement scenarios.


Author(s):  
Zhengyu Guo ◽  
Chaolei Wang ◽  
Hang Qian ◽  
Zhiguo Han ◽  
Jingxian Zhang

A distributed multi-missile cooperative guidance law based on the finite time theory is proposed to solve the terminal guidance problem of three-dimensional multi-missiles cooperative interception of large maneuvering target. According to the finite time consistency theory, an adaptive guidance law based on the integral sliding mode is designed to ensure that all missiles can reach the target at the same time in the terminal guidance process. The longitudinal and lateral acceleration of the line of sight are based on the guidance law of the fast terminal sliding mode surface. The terminal attack angle is constrained, so that the terminal attack Angle can reach the expected value in finite time. The simulation results show that the designed guidance law can achieve the cooperative attack on the maneuvering targets.


Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

Sign in / Sign up

Export Citation Format

Share Document