Studying the Operating Modes of a Current Source DC/DC Converter with Voltage Clamping Across Resonant Capacitor and Different Designs of the High Frequency Transformer

Author(s):  
Teodora Todorova ◽  
Dimitar Arnaudov ◽  
Krasimir Kishkin
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6349
Author(s):  
Cao Anh Tuan ◽  
Takaharu Takeshita

A compact and highly efficient unidirectional DC–DC converter is required as a battery charger for electrical vehicles, which will rapidly become widespread in the near future. The single active bridge (SAB) converter is proposed as a simple and high-frequency isolated unidirectional converter, which is comprised of an active H-bridge converter in the primary side, an isolated high frequency transformer, and a rectifying secondary diode bridge output circuit. This paper presents a novel, unidirectional, high-frequency isolated DC–DC converter called a Secondary Resonant Single Active Bridge (SR–SAB) DC–DC converter. The circuit topology of the SR–SAB converter is a resonant capacitor connected to each diode in parallel in order to construct the series resonant circuit in the secondary circuit. As a result, the SR–SAB converter achieves a higher total power factor at the high frequency transformer and a unity voltage conversion ratio under the unity transformer turns ratio. Small and nonsignificant overshoot values of current and voltage waveforms are observed. Soft-switching commutations of the primary H-bridge circuit and the soft recovery of secondary diode bridge are achieved. The operating philosophy and design method of the proposed converter are presented. Output power control using transformer frequency variation is proposed. The effectiveness of the SR–SAB converter was verified by experiments using a 1 kW, 48 VDC, and 20 kHz laboratory prototype.


Author(s):  
Teodora Plamenova Todorova ◽  
Dimitar Damyanov Arnaudo ◽  
Krasimir Yordanov Kishkin ◽  
Nikolay Luboslavov Hinov

Author(s):  
Athira S ◽  
Deepa Kaliyaperumal

A bidirectional dc-dc converter with multiple outputs are concatenated with a high frequency current source parallel resonant push pull inverter is presented in this paper. The two outputs are added together and it is taken as the input source for the inverter. The current source parallel resonant push pull inverter implemented here with high frequency applications like induction heating, Fluorescent lighting, Digital signal processing sonar. This paper proposes a simple photovoltaic power system consists of a bidirectional converter and a current fed inverter for regulating the load variations. Solar power is used as the input source for the system. Simulation of the proposed system is carried out in PSIM software and experimentally verified the results.


Sign in / Sign up

Export Citation Format

Share Document