Enhancing the Power Grid Performance by Integrating Wind Turbines Systems

Author(s):  
Ihsan Mizher Baht ◽  
Petre Marian Nicolae ◽  
Ileana-Diana Nicolae
Keyword(s):  
2013 ◽  
Vol 805-806 ◽  
pp. 430-435
Author(s):  
Chang Xi Huang ◽  
Shu Ying Yang ◽  
Liu Wei Chen

Unbalanced input voltages would make doubly fed induction generator (DFIG)-based wind turbine operating performance deteriorate, such as shaft tremble, temperature increasing, and so on, even make it cut out of the power grid. Meanwhile, without proper control the power ripples generated from wind turbines may further aggravate power grid. Considering the unbalanced conditions, DFIG was modeled in dual synchronous reference frame (SRF), namely the positive one and the negative one, based on which the dual PI current controllers were designed. To implement the dual current control, the sensing variables were divided into positive and negative sequence components, which were controlled in positive and negative SRF respectively. At the same time, to synchronize with the positive and negative sequence voltage components, a phase latch loop (PLL) control was designed. Experimental results on 11kW DFIG wind turbine test bed validated the designed control system.


2014 ◽  
Vol 950 ◽  
pp. 314-320 ◽  
Author(s):  
Jun Jia ◽  
Xin Xin Hu ◽  
Ping Ping Han ◽  
Yan Ping Hu

With the scale of wind farm continuously increasing, when grid fault, the influences of the wind turbines connected to the grid on the stability of the power grid can never be ignored. Therefore, there are higher standards of the wind turbines’ abilities of fault ride-through (FRT) and producing reactive power. This paper studies the direct-drive wind power system, and the main point is the fault ride-through (FRT) of the permanent magnetic synchronous generator (PMSG) with Chopper. By establishing the dynamic model of PMSG under the environment of DigSILENT, this paper simulates the fault ride-through (FRT) of the direct-drive wind power system connecting into power grid. During the research, we focus on the stability of voltage about the Chopper to the DC bus under faults. What’s more, in this paper, we analysis the data about how the Chopper help the DC bus to improve its stability. The simulation results show that: when there is a fault on the point of common coupling, the permanent magnetic synchronous generator has the capability of fault ride-through (FRT). Especially when there is a voltage dip on the grid side, the permanent magnetic synchronous generator could produce reactive power for power grid, effectively preventing the system voltage from declining seriously, so as to improve the system stability under faults.


2002 ◽  
Vol 26 (3) ◽  
pp. 171-188 ◽  
Author(s):  
Vladislav Akhmatov

This article describes the second part of a larger investigation of dynamic interaction between variable-speed wind turbines equipped with doubly-fed induction generators (DFIG) and the power grid. A simulation model is applied for dynamic stability investigations, with the entire power grid subjected to a short-circuit fault. During the grid disturbances, the DFIG converter is found to be the most sensitive part of the wind turbine. Therefore the electrical currents are determined using the transient generator model. The converter action is crucial for wind turbine operation associated with such disturbances, especially regarding tripping or uninterrupted operation.


2021 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Saken Koyshybaevich Sheryazov ◽  
Sultanbek Sansyzbaevich Issenov ◽  
Ruslan Maratbekovich Iskakov ◽  
Argyn Bauyrzhanuly Kaidar

The paper describes special aspects of using the wind power plants (wind turbines) in the power grid. The paper provides the classification and schematic presentation of AC wind turbines, analyzes the role, place and performance of wind power plants in Smart Grid systems with a large share of renewable energy sources. The authors also reviews a detailed analysis of existing AC wind turbines in this paper. Recommendations are given for how to enhance the wind power plants in smart grids in terms of reliability, and introduce the hardware used in the generation, conversion and interface systems into the existing power grid. After the wind power plants had been put online, the relevance of the Smart Grid concept for existing power grids was obvious. The execution of such projects is assumed to be financially costly, requires careful study, and development of flexible algorithms, but in some cases this may be the only approach. The analysis of using wind turbines shows that the structural configuration of wind power plants can be based on the principles known in the power engineering. The approaches may differ, not fundamentally, but in engineering considerations. it is necessary to point out that the method of controlling dual-power machines is quite comprehensive so that their wide use will face operational problems caused by the lack of highly professional specialists in electric drives. Therefore, it seems advisable to use square-cage asynchronous generators in wide applications. The paper shows that as the renewable energy sources are largely used in power grids, there is an issue of maintaining the power generation at a required level considering the variability of incoming wind energy. This results in the malfunctions in the operation of relay protection devices and emergency control automatics (RP and ECA), and the complicated control. Also, the standards of the CIS countries and regulatory documents miss the requirements for the wind turbine protections, taking into account their specialty causing the inefficient standard protective logic, which does not work correctly in a number of abnormal and emergency operating modes, and especially Smart Grid in power grids.


Author(s):  
Xinyuan Liu ◽  
Huiping Zheng ◽  
Xiaoju Hou ◽  
Pai Liu ◽  
Erjun Shen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document