The Study of Chopper in the LVRT of Direct-Drive Wind Energy Generation System

2014 ◽  
Vol 950 ◽  
pp. 314-320 ◽  
Author(s):  
Jun Jia ◽  
Xin Xin Hu ◽  
Ping Ping Han ◽  
Yan Ping Hu

With the scale of wind farm continuously increasing, when grid fault, the influences of the wind turbines connected to the grid on the stability of the power grid can never be ignored. Therefore, there are higher standards of the wind turbines’ abilities of fault ride-through (FRT) and producing reactive power. This paper studies the direct-drive wind power system, and the main point is the fault ride-through (FRT) of the permanent magnetic synchronous generator (PMSG) with Chopper. By establishing the dynamic model of PMSG under the environment of DigSILENT, this paper simulates the fault ride-through (FRT) of the direct-drive wind power system connecting into power grid. During the research, we focus on the stability of voltage about the Chopper to the DC bus under faults. What’s more, in this paper, we analysis the data about how the Chopper help the DC bus to improve its stability. The simulation results show that: when there is a fault on the point of common coupling, the permanent magnetic synchronous generator has the capability of fault ride-through (FRT). Especially when there is a voltage dip on the grid side, the permanent magnetic synchronous generator could produce reactive power for power grid, effectively preventing the system voltage from declining seriously, so as to improve the system stability under faults.

2016 ◽  
Vol 17 (5) ◽  
pp. 541-546 ◽  
Author(s):  
Helmy M. El-Zoghby ◽  
Ahmed F. Bendary

Abstract In this paper Static Synchronous Compensator (STATCOM) is used for improving the performance of the power grid with wind turbine that drives synchronous generator. The main feature of the STATCOM is that it has the ability to absorb or inject rapidly reactive power to grid. Therefore the voltage regulation of the power grid with STATCOM device is achieved. STATCOM also improves the stability of the power system after occurring severe disturbance such as faults, or suddenly step change in wind speed. The proposed STATCOM controller is a Proportional-Integral (PI) controller tuned by Genetic Algorithm (GA). An experimental model was built in Helwan University to the proposed system. The system is tested at different operating conditions. The experimental results prove the effectiveness of the proposed STATCOM controller in damping the power system oscillations and restoring the power system voltage and stability.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zuoshan Li

This article first studies the operating principles of wind turbines, focusing on the analysis of the structure and working principles of permanent magnet direct-drive wind turbines. According to the actual needs of the wind power system, the monitoring objects of the monitoring system are determined, and the overall monitoring plan for wind power generation is proposed to realize real-time analysis of the operating characteristics of the wind power system. At the same time, it pointed out the great significance of the wind power generation simulation experiment system and focused on the wind speed modeling. In terms of hardware research and analysis, relevant sensors, high-speed data acquisition cards, etc., were selected, and relevant signal conditioning circuits were designed, and a permanent magnet direct-drive wind power generation system simulation monitoring platform was constructed. In terms of software, LabVIEW was chosen as the design language of the monitoring system, and it pointed out the advantages of using LabVIEW in this monitoring system. Finally, the system uses the laboratory permanent magnet direct-drive wind turbine as the monitoring object. The practicality and accuracy of the system are verified through experiments such as permanent magnet motor power test, motor speed test, database system test, and remote monitoring test. The experimental results show that the monitoring system has a friendly interface and perfect functions and has important practicability and reference in the field of wind power monitoring.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5022 ◽  
Author(s):  
Yusheng Sun ◽  
Yaqian Zhao ◽  
Zhifeng Dou ◽  
Yanyan Li ◽  
Leilei Guo

As much wind power is integrated into the power grid through power electronic equipment, the use of wind power is increased rapidly. Wind power system makes the power grid lack inertia and damping, thereby reducing power grid stability; in severe cases, it may even be disconnected. virtual synchronous generator (VSG) has been put forward to enhance the anti-disturbance performance of power grid. However, conventional VSG adopts an outer power loop and inner-current loop control. The inner-current loop control needs a pulse width modulation (PWM) module and proportion integration (PI) parameter settings. In order to reduce the parameter settings and simplify control structures, in this study, model predictive control (MPC) is used instead of inner-current loop control. At the same time—for the overall stability and control flexibility of the back-to-back system—we further propose to use outer-voltage loop control (OVLC) and MPC to stabilize direct current (DC) voltage on the machine-side and to employ model predictive virtual synchronous controls to provide inertia and damping for the power grid. The proposed control method was simulated in Matlab/Simulink (MathWorks, Massachusetts, MA, 2016) and verified by experimental results.


Sign in / Sign up

Export Citation Format

Share Document