scholarly journals Neural Network Based Decision Fusion for Abnormality Detection via Molecular Communications

Author(s):  
Sinem Nimet Solak ◽  
Menguc Oner
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Defeng Lv ◽  
Huawei Wang ◽  
Changchang Che

Purpose The purpose of this study is to achieve an accurate intelligent fault diagnosis of rolling bearing. Design/methodology/approach To extract deep features of the original vibration signal and improve the generalization ability and robustness of the fault diagnosis model, this paper proposes a fault diagnosis method of rolling bearing based on multiscale convolutional neural network (MCNN) and decision fusion. The original vibration signals are normalized and matrixed to form grayscale image samples. In addition, multiscale samples can be achieved by convoluting these samples with different convolution kernels. Subsequently, MCNN is constructed for fault diagnosis. The results of MCNN are put into a data fusion model to obtain comprehensive fault diagnosis results. Findings The bearing data sets with multiple multivariate time series are used to testify the effectiveness of the proposed method. The proposed model can achieve 99.8% accuracy of fault diagnosis. Based on MCNN and decision fusion, the accuracy can be improved by 0.7%–3.4% compared with other models. Originality/value The proposed model can extract deep general features of vibration signals by MCNN and obtained robust fault diagnosis results based on the decision fusion model. For a long time series of vibration signals with noise, the proposed model can still achieve accurate fault diagnosis.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 529 ◽  
Author(s):  
Hui Zeng ◽  
Bin Yang ◽  
Xiuqing Wang ◽  
Jiwei Liu ◽  
Dongmei Fu

With the development of low-cost RGB-D (Red Green Blue-Depth) sensors, RGB-D object recognition has attracted more and more researchers’ attention in recent years. The deep learning technique has become popular in the field of image analysis and has achieved competitive results. To make full use of the effective identification information in the RGB and depth images, we propose a multi-modal deep neural network and a DS (Dempster Shafer) evidence theory based RGB-D object recognition method. First, the RGB and depth images are preprocessed and two convolutional neural networks are trained, respectively. Next, we perform multi-modal feature learning using the proposed quadruplet samples based objective function to fine-tune the network parameters. Then, two probability classification results are obtained using two sigmoid SVMs (Support Vector Machines) with the learned RGB and depth features. Finally, the DS evidence theory based decision fusion method is used for integrating the two classification results. Compared with other RGB-D object recognition methods, our proposed method adopts two fusion strategies: Multi-modal feature learning and DS decision fusion. Both the discriminative information of each modality and the correlation information between the two modalities are exploited. Extensive experimental results have validated the effectiveness of the proposed method.


2018 ◽  
Vol 9 (3S) ◽  
pp. 1
Author(s):  
F.R. Hashim ◽  
J. Adnan ◽  
M.M. Ibrahim ◽  
M.T. Ishak ◽  
M.F.M. Din ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Weixiao Xu ◽  
Luyang Jing ◽  
Jiwen Tan ◽  
Lianchen Dou

Each pattern recognition method has its advantages and disadvantages to diagnose the state of rotating machinery. There are many fault types of rolling bearings with apparent uncertainty. The optimal fusion level is usually challenging to be selected for a specific fault diagnosis task, and extensive human labour and prior knowledge are also highly required during these selections. To solve the above problems, a multimodel decision fusion method based on Deep Convolutional Neural Network and Improved Dempster-Shafer Evidence Theory (DCNN-IDST) is proposed for the inspection of rolling bearing. To solve the defect of the original evidence theory method in the fusion of high-conflict evidence, the fuzzy consistency matrix is introduced. By calculating the factor weight, the reliability and rationality of D-S evidence theory are improved. The DCNN model can learn features from the original data and carry out adaptive feature extraction for multiple sensor information. The features extracted by DCNN adaptively are input into multiple network models for decision fusion. The new method of DCNN-IDST multimodel decision fusion is applied to detect the damage of rolling bearings. To evaluate the effectiveness of the proposed method, both the BP neural network and RBF neural network are used to set up a multigroup comparison test. The result demonstrates that the proposed method can detect the fault of the rolling bearing effectively and achieve the highest diagnosis accuracy among all the tested methods in the experiment.


Sign in / Sign up

Export Citation Format

Share Document