Classification of EEG signals recorded during in facial movements for human-machine interaction

Author(s):  
Shahin Pourzare ◽  
Onder Aydemir ◽  
Temel Kayikcioglu
2021 ◽  
Vol 15 ◽  
Author(s):  
Baoguo Xu ◽  
Dalin Zhang ◽  
Yong Wang ◽  
Leying Deng ◽  
Xin Wang ◽  
...  

Grasping is one of the most indispensable functions of humans. Decoding reach-and-grasp actions from electroencephalograms (EEGs) is of great significance for the realization of intuitive and natural neuroprosthesis control, and the recovery or reconstruction of hand functions of patients with motor disorders. In this paper, we investigated decoding five different reach-and-grasp movements closely related to daily life using movement-related cortical potentials (MRCPs). In the experiment, nine healthy subjects were asked to naturally execute five different reach-and-grasp movements on the designed experimental platform, namely palmar, pinch, push, twist, and plug grasp. A total of 480 trials per subject (80 trials per condition) were recorded. The MRCPs amplitude from low-frequency (0.3–3 Hz) EEG signals were used as decoding features for further offline analysis. Average binary classification accuracy for grasping vs. the no-movement condition peaked at 75.06 ± 6.8%. Peak average accuracy for grasping vs. grasping conditions of 64.95 ± 7.4% could be reached. Grand average peak accuracy of multiclassification for five grasping conditions reached 36.7 ± 6.8% at 1.45 s after the movement onset. The analysis of MRCPs indicated that all the grasping conditions are more pronounced than the no-movement condition, and there are also significant differences between the grasping conditions. These findings clearly proved the feasibility of decoding multiple reach-and-grasp actions from noninvasive EEG signals. This work is significant for the natural and intuitive BCI application, particularly for neuroprosthesis control or developing an active human–machine interaction system, such as rehabilitation robot.


2021 ◽  
Vol 8 ◽  
Author(s):  
Franz A. Van-Horenbeke ◽  
Angelika Peer

Recognizing the actions, plans, and goals of a person in an unconstrained environment is a key feature that future robotic systems will need in order to achieve a natural human-machine interaction. Indeed, we humans are constantly understanding and predicting the actions and goals of others, which allows us to interact in intuitive and safe ways. While action and plan recognition are tasks that humans perform naturally and with little effort, they are still an unresolved problem from the point of view of artificial intelligence. The immense variety of possible actions and plans that may be encountered in an unconstrained environment makes current approaches be far from human-like performance. In addition, while very different types of algorithms have been proposed to tackle the problem of activity, plan, and goal (intention) recognition, these tend to focus in only one part of the problem (e.g., action recognition), and techniques that address the problem as a whole have been not so thoroughly explored. This review is meant to provide a general view of the problem of activity, plan, and goal recognition as a whole. It presents a description of the problem, both from the human perspective and from the computational perspective, and proposes a classification of the main types of approaches that have been proposed to address it (logic-based, classical machine learning, deep learning, and brain-inspired), together with a description and comparison of the classes. This general view of the problem can help on the identification of research gaps, and may also provide inspiration for the development of new approaches that address the problem in a unified way.


Author(s):  
Marco Antonio Meggiolaro ◽  
Felipe Rebelo Lopes

Sign in / Sign up

Export Citation Format

Share Document