Inverse design of next-generation nanophotonic devices

Author(s):  
Mediha Tutgun ◽  
Yusuf Abdulaziz Yilmaz ◽  
Aydan Yeltik ◽  
Done Yilmaz ◽  
Ahmet Mesut Alpkilic ◽  
...  
2021 ◽  
pp. 1-1
Author(s):  
Keisuke Kojima ◽  
Mohammad H. Tahersima ◽  
Toshiaki Koike-Akino ◽  
Devesh K. Jha ◽  
Yingheng Tang ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jie Huang ◽  
Hansi Ma ◽  
Dingbo Chen ◽  
Huan Yuan ◽  
Jinping Zhang ◽  
...  

AbstractNanophotonic devices with high densities are extremely attractive because they can potentially merge photonics and electronics at the nanoscale. However, traditional integrated photonic circuits are designed primarily by manually selecting parameters or employing semi-analytical models. Limited by the small parameter search space, the designed nanophotonic devices generally have a single function, and the footprints reach hundreds of microns. Recently, novel ultra-compact nanophotonic devices with digital structures were proposed. By applying inverse design algorithms, which can search the full parameter space, the proposed devices show extremely compact footprints of a few microns. The results from many groups imply that digital nanophotonics can achieve not only ultra-compact single-function devices but also miniaturized multi-function devices and complex functions such as artificial intelligence operations at the nanoscale. Furthermore, to balance the performance and fabrication tolerances of such devices, researchers have developed various solutions, such as adding regularization constraints to digital structures. We believe that with the rapid development of inverse design algorithms and continuous improvements to the nanofabrication process, digital nanophotonics will play a key role in promoting the performance of nanophotonic integration. In this review, we uncover the exciting developments and challenges in this field, analyse and explore potential solutions to these challenges and provide comments on future directions in this field.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1048 ◽  
Author(s):  
Takenori Naito ◽  
Katsuaki Tanabe

A Si/graphene/Si planar double heterostructure has been fabricated by means of semiconductor wafer bonding. The interfacial mechanical stability and interlayer electrical connection have been verified for the structure. To the best of our knowledge, this is the first realization of a monolayer-cored double heterostructure. In addition, a double heterostructure with bilayer graphene has been prepared for bandgap generation and tuning by application of a bias voltage. These structures move towards the realization of versatile graphene optoelectronics, such as an electrically pumped graphene laser. Our Si/graphene/Si double heterostructure is positioned to form a new basis for next-generation nanophotonic devices with high photon and carrier confinements, earth abundance (C, Si), environmental safety (C, Si), and excellent optical and electrical controllability by silicon clads.


Author(s):  
Alexander Y. Piggott ◽  
Jesse Lu ◽  
Konstantinos G. Lagoudakis ◽  
Jan Petykiewicz ◽  
Thomas M. Babinec ◽  
...  

2020 ◽  
Vol 117 (35) ◽  
pp. 21052-21057 ◽  
Author(s):  
Wenjie Zhou ◽  
Zizhuo Liu ◽  
Ziyin Huang ◽  
Haixin Lin ◽  
Devleena Samanta ◽  
...  

Anchoring nanoscale building blocks, regardless of their shape, into specific arrangements on surfaces presents a significant challenge for the fabrication of next-generation chip-based nanophotonic devices. Current methods to prepare nanocrystal arrays lack the precision, generalizability, and postsynthetic robustness required for the fabrication of device-quality, nanocrystal-based metamaterials [Q. Y. Lin et al. Nano Lett. 15, 4699–4703 (2015); V. Flauraud et al., Nat. Nanotechnol. 12, 73–80 (2017)]. To address this challenge, we have developed a synthetic strategy to precisely arrange any anisotropic colloidal nanoparticle onto a substrate using a shallow-template-assisted, DNA-mediated assembly approach. We show that anisotropic nanoparticles of virtually any shape can be anchored onto surfaces in any desired arrangement, with precise positional and orientational control. Importantly, the technique allows nanoparticles to be patterned over a large surface area, with interparticle distances as small as 4 nm, providing the opportunity to exploit light–matter interactions in an unprecedented manner. As a proof-of-concept, we have synthesized a nanocrystal-based, dynamically tunable metasurface (an anomalous reflector), demonstrating the potential of this nanoparticle-based metamaterial synthesis platform.


2020 ◽  
Vol 8 (4) ◽  
pp. 528 ◽  
Author(s):  
Kaiyuan Wang ◽  
Xinshu Ren ◽  
Weijie Chang ◽  
Longhui Lu ◽  
Deming Liu ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1041-1057 ◽  
Author(s):  
Sunae So ◽  
Trevon Badloe ◽  
Jaebum Noh ◽  
Jorge Bravo-Abad ◽  
Junsuk Rho

AbstractDeep learning has become the dominant approach in artificial intelligence to solve complex data-driven problems. Originally applied almost exclusively in computer-science areas such as image analysis and nature language processing, deep learning has rapidly entered a wide variety of scientific fields including physics, chemistry and material science. Very recently, deep neural networks have been introduced in the field of nanophotonics as a powerful way of obtaining the nonlinear mapping between the topology and composition of arbitrary nanophotonic structures and their associated functional properties. In this paper, we have discussed the recent progress in the application of deep learning to the inverse design of nanophotonic devices, mainly focusing on the three existing learning paradigms of supervised-, unsupervised-, and reinforcement learning. Deep learning forward modelling i.e. how artificial intelligence learns how to solve Maxwell’s equations, is also discussed, along with an outlook of this rapidly evolving research area.


Sign in / Sign up

Export Citation Format

Share Document