scholarly journals Data-Driven Prediction of Route-Level Energy Use for Mixed-Vehicle Transit Fleets

Author(s):  
Afiya Ayman ◽  
Michael Wilbur ◽  
Amutheezan Sivagnanam ◽  
Philip Pugliese ◽  
Abhishek Dubey ◽  
...  
Keyword(s):  
2022 ◽  
Vol 22 (1) ◽  
pp. 1-29
Author(s):  
Afiya Ayman ◽  
Amutheezan Sivagnanam ◽  
Michael Wilbur ◽  
Philip Pugliese ◽  
Abhishek Dubey ◽  
...  

Due to the high upfront cost of electric vehicles, many public transit agencies can afford only mixed fleets of internal combustion and electric vehicles. Optimizing the operation of such mixed fleets is challenging because it requires accurate trip-level predictions of electricity and fuel use as well as efficient algorithms for assigning vehicles to transit routes. We present a novel framework for the data-driven prediction of trip-level energy use for mixed-vehicle transit fleets and for the optimization of vehicle assignments, which we evaluate using data collected from the bus fleet of CARTA, the public transit agency of Chattanooga, TN. We first introduce a data collection, storage, and processing framework for system-level and high-frequency vehicle-level transit data, including domain-specific data cleansing methods. We train and evaluate machine learning models for energy prediction, demonstrating that deep neural networks attain the highest accuracy. Based on these predictions, we formulate the problem of minimizing energy use through assigning vehicles to fixed-route transit trips. We propose an optimal integer program as well as efficient heuristic and meta-heuristic algorithms, demonstrating the scalability and performance of these algorithms numerically using the transit network of CARTA.


Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119539
Author(s):  
Karthik Panchabikesan ◽  
Fariborz Haghighat ◽  
Mohamed El Mankibi

2021 ◽  
Author(s):  
Craig Brown

The quest to ‘green’ the built environment has been ongoing since the early 1970s and has intensified as the threat of exceeding 450 ppm of atmospheric carbon dioxide has become more real. As a result of this, many contemporary residential high-rise buildings are designed with hopes of achieving carbon emission reductions, while not sacrificing occupant satisfaction, or property value. Little is known about how the occupants of these buildings contribute to the energy and water consumed therein, nor the effects that these design aspirations have on occupant satisfaction. The present study relies on data collected in four recently built, Leadership in Energy and Environmental Design [LEED] certified, high-rise, residential buildings in Ontario, Canada. Using various sources of data (i.e., from energy and water submeters, questionnaire responses, interviews, and physical data relating to each suite) the extent to which physical, behavioural, and demographic variables explain suite-level energy and water consumption was explored. Energy use intensity differed by a factor of 7 between similar suites, electricity by a factor of 5, hot water by a factor of 13, cooling by a factor of 47, and heating by a factor of 67. Results show that physical building characteristics explain 43% of the heating variability, 16% of the cooling variability, and 40% of electricity variability, suggesting that the remainders could be a result of occupant behaviour and demographics. It was also discovered that 52% of respondents were not using their energy recovery ventilators [ERV] for the following reasons: acoustic dissatisfaction, difficulty with accessibility of filters, occupant knowledge and preferences, and a lack of engagement with training materials. Results suggest that abandoning mechanical ventilation in favour of passive ventilation could actually lead to greater satisfaction with indoor air quality and to decreased energy consumption. Using content analysis of questionnaire comments, the utility of contextual factors in understanding energy use and satisfaction in the study buildings, as well as their value in producing feedback for designers and managers, was explored. Combining quantitative and qualitative datasets was an effective approach to understanding energy use in this understudied building type.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5556
Author(s):  
Benedetto Grillone ◽  
Gerard Mor ◽  
Stoyan Danov ◽  
Jordi Cipriano ◽  
Florencia Lazzari ◽  
...  

Interpretable and scalable data-driven methodologies providing high granularity baseline predictions of energy use in buildings are essential for the accurate measurement and verification of energy renovation projects and have the potential of unlocking considerable investments in energy efficiency worldwide. Bayesian methodologies have been demonstrated to hold great potential for energy baseline modelling, by providing richer and more valuable information using intuitive mathematics. This paper proposes a Bayesian linear regression methodology for hourly baseline energy consumption predictions in commercial buildings. The methodology also enables a detailed characterization of the analyzed buildings through the detection of typical electricity usage profiles and the estimation of the weather dependence. The effects of different Bayesian model specifications were tested, including the use of different prior distributions, predictor variables, posterior estimation techniques, and the implementation of multilevel regression. The approach was tested on an open dataset containing two years of electricity meter readings at an hourly frequency for 1578 non-residential buildings. The best performing model specifications were identified, among the ones tested. The results show that the methodology developed is able to provide accurate high granularity baseline predictions, while also being intuitive and explainable. The building consumption characterization provides actionable information that can be used by energy managers to improve the performance of the analyzed facilities.


Sign in / Sign up

Export Citation Format

Share Document