scholarly journals The importance of understanding occupant behaviour in buildings: exploring the nexus of design, management, behaviour, and energy use in green, high-rise residential buildings

Author(s):  
Craig Brown

The quest to ‘green’ the built environment has been ongoing since the early 1970s and has intensified as the threat of exceeding 450 ppm of atmospheric carbon dioxide has become more real. As a result of this, many contemporary residential high-rise buildings are designed with hopes of achieving carbon emission reductions, while not sacrificing occupant satisfaction, or property value. Little is known about how the occupants of these buildings contribute to the energy and water consumed therein, nor the effects that these design aspirations have on occupant satisfaction. The present study relies on data collected in four recently built, Leadership in Energy and Environmental Design [LEED] certified, high-rise, residential buildings in Ontario, Canada. Using various sources of data (i.e., from energy and water submeters, questionnaire responses, interviews, and physical data relating to each suite) the extent to which physical, behavioural, and demographic variables explain suite-level energy and water consumption was explored. Energy use intensity differed by a factor of 7 between similar suites, electricity by a factor of 5, hot water by a factor of 13, cooling by a factor of 47, and heating by a factor of 67. Results show that physical building characteristics explain 43% of the heating variability, 16% of the cooling variability, and 40% of electricity variability, suggesting that the remainders could be a result of occupant behaviour and demographics. It was also discovered that 52% of respondents were not using their energy recovery ventilators [ERV] for the following reasons: acoustic dissatisfaction, difficulty with accessibility of filters, occupant knowledge and preferences, and a lack of engagement with training materials. Results suggest that abandoning mechanical ventilation in favour of passive ventilation could actually lead to greater satisfaction with indoor air quality and to decreased energy consumption. Using content analysis of questionnaire comments, the utility of contextual factors in understanding energy use and satisfaction in the study buildings, as well as their value in producing feedback for designers and managers, was explored. Combining quantitative and qualitative datasets was an effective approach to understanding energy use in this understudied building type.

2021 ◽  
Author(s):  
Craig Brown

The quest to ‘green’ the built environment has been ongoing since the early 1970s and has intensified as the threat of exceeding 450 ppm of atmospheric carbon dioxide has become more real. As a result of this, many contemporary residential high-rise buildings are designed with hopes of achieving carbon emission reductions, while not sacrificing occupant satisfaction, or property value. Little is known about how the occupants of these buildings contribute to the energy and water consumed therein, nor the effects that these design aspirations have on occupant satisfaction. The present study relies on data collected in four recently built, Leadership in Energy and Environmental Design [LEED] certified, high-rise, residential buildings in Ontario, Canada. Using various sources of data (i.e., from energy and water submeters, questionnaire responses, interviews, and physical data relating to each suite) the extent to which physical, behavioural, and demographic variables explain suite-level energy and water consumption was explored. Energy use intensity differed by a factor of 7 between similar suites, electricity by a factor of 5, hot water by a factor of 13, cooling by a factor of 47, and heating by a factor of 67. Results show that physical building characteristics explain 43% of the heating variability, 16% of the cooling variability, and 40% of electricity variability, suggesting that the remainders could be a result of occupant behaviour and demographics. It was also discovered that 52% of respondents were not using their energy recovery ventilators [ERV] for the following reasons: acoustic dissatisfaction, difficulty with accessibility of filters, occupant knowledge and preferences, and a lack of engagement with training materials. Results suggest that abandoning mechanical ventilation in favour of passive ventilation could actually lead to greater satisfaction with indoor air quality and to decreased energy consumption. Using content analysis of questionnaire comments, the utility of contextual factors in understanding energy use and satisfaction in the study buildings, as well as their value in producing feedback for designers and managers, was explored. Combining quantitative and qualitative datasets was an effective approach to understanding energy use in this understudied building type.


2021 ◽  
Author(s):  
Niall Buckley ◽  
Gerald Mill s ◽  
Christoph Reinhart

<p>The EU’s Green Deal has a goal of a climate-neutral Europe by 2050. Achieving this goal will require a comprehensive set of actions across all economic sectors, especially the building sector, which currently accounts for 40% of the energy consumed.  Residential energy use is a significant contributor, much of it due to the poorly insulated building stock. Making a ‘just transition’ to more energy-efficient cities requires a spatial approach that can address the correspondence of poor housing and people and the potential for energy innovation at a neighbourhood-scale. In this study, a geographic database of building archetypes is developed for use by the Urban Modelling Interface (Umi) to perform simulations of urban energy use intensity and test the efficacy of energy policies. Umi is applied to a neighbourhood of residential buildings in Dublin (Ireland), many of which perform poorly. Simulated annual energy use intensity is evaluated favourably using energy performance certificate data. Umi is used subsequently to design and test the efficacy of district-level energy policies; the results indicate that the most cost-effective mix of envelope retrofit and onsite energy production to achieve the Green Deal’s target of 60% reduction in greenhouse gas emissions by 2030 and 100% by 2050. The methodology shown here employs data and software that is publicly available for many EU countries.</p>


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1049 ◽  
Author(s):  
Sangtae No ◽  
Chungyeon Won

Although interest in and the importance of green building certification have increased, it is difficult to determine how much less energy the buildings actually consume after obtaining sustainability related certification, such as LEED in the USA, and G-SEED in Korea. Focusing on building energy evaluation, we compared and analyzed the energy evaluation items of LEED and G-SEED. In addition, from the Korean public data portal site, this study investigated the annual site energy consumption (electricity and gas) per floor area of non-residential buildings that obtained G-SEED certification in Korea. The energy consumption of non-certified general buildings was compared with the energy consumption of certified buildings. As a result of examining 84 samples of this study, non-residential buildings with G-SEED certification showed energy use intensity that was at least (35.5 to 48.9)% lower than that of uncertified buildings.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Frederick Paige ◽  
Philip Agee ◽  
Farrokh Jazizadeh

AbstractThe behaviors of building occupants have continued to perplex scholars for years in our attempts to develop models for energy efficient housing. Building simulations, project delivery approaches, policies, and more have fell short of their optimistic goals due to the complexity of human behavior. As a part of a multiphase longitudinal affordable housing study, this dataset represents energy and occupant behavior attributes for 6 affordable housing units over nine months in Virginia, USA which are not performing to the net-zero energy standard they were designed for. This dataset provides researchers the ability to analyze the following variables: energy performance, occupant behaviors, energy literacy, and ecological perceptions. Energy data is provided at a 1 Hz sampling rate for four circuits: main, hot water heater, dryer, and HVAC. Building specifications, occupancy, weather data, and neighboring building energy use data are provided to add depth to the dataset. This dataset can be used to update building energy use models, predictive maintenance, policy frameworks, construction risk models, economic models, and more.


2017 ◽  
Vol 7 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Kamalesh Panthi ◽  
Kanchan Das ◽  
Tarek Abdel-Salam

Purpose Vacation rental homes, in general, have different energy usage characteristics than traditional residential homes mainly because of the occupancy pattern that changes on a weekly basis. These homes, predominantly larger in size, offer a greater scope for energy savings also because of the wasteful habits of their seasonal occupants. The purpose of this paper is to investigate the causes of energy inefficiencies prevalent in these homes so that appropriate retrofit choices can be offered to homeowners. Design/methodology/approach This research presents a case study of a vacation rental home whose energy consumption was investigated in depth and energy inefficiencies identified through modeling using energy modeling software, eQUEST. Simulations were performed to identify viable retrofit scenarios. Findings While improvement in the building envelope such as providing shades/overhangs on the windows, reducing infiltration and increasing insulation of the exterior wall did not show promising results for savings on energy cost, other improvements such as use of highly efficient lamps, tank-less water heater system and occupancy sensors showed viable investment options with shorter payback periods. It was also found that energy use intensity of sampled houses was about half of the average of US residential buildings, which could primarily be attributed to the seasonal nature of occupancy of these houses. Originality/value There is a dearth of literature pertaining to energy efficiency-related retrofits of coastal vacation homes. This research fills that gap to some extent by addressing this issue with an ultimate aim of assisting homeowners in retrofit decision-making.


2014 ◽  
Vol 8 (4) ◽  
pp. 492-505 ◽  
Author(s):  
Craig Brown ◽  
Mark Gorgolewski

Purpose – This paper aims to present four purposes: to assess occupant satisfaction with indoor environmental quality (IEQ); to determine if occupants appear to be operating their dwellings in an energy efficient manner; to suggest ways that occupant satisfaction and behaviour can help or hinder energy efficiency; and to show that the post-occupancy evaluation approach is an effective tool in diagnosing and improving satisfaction and energy efficiency in high-rise residential buildings. Design/methodology/approach – Beyond measuring occupant satisfaction with IEQ, this paper uses scores and user comments from occupant questionnaires to identify success and indicate frustration and/or confusion with particular building technologies. It also extrapolates the energy efficiency implications of these responses in four Leadership in Energy and Environmental Design Gold residential towers. Findings – The research highlights where problems occur, particularly with the adoption of new technologies which may not be well understood by the occupants. It also identifies behaviour patterns that may negate energy efficiency strategies. Research limitations/implications – The lack of dwelling metre data prevents this research from making causal links between behaviours and their energy implications. Also, the lack of Canadian benchmarks for satisfaction of occupants means that comparisons can only be made to cases from the UK, which is less robust. Originality/value – This type of work has never been done in Canadian residential high rise towers before. It helps to better understand the process of ensuring that occupants successfully adopt innovation that can lead to energy savings.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2100 ◽  
Author(s):  
Kalliopi G. Droutsa ◽  
Constantinos A. Balaras ◽  
Spyridon Lykoudis ◽  
Simon Kontoyiannidis ◽  
Elena G. Dascalaki ◽  
...  

This work exploits data from 30,000 energy performance certificates of whole nonresidential (NR) buildings in Greece. The available information is analyzed for 30 different NR building uses (e.g., hotels, schools, sports facilities, hospitals, retails, offices) and four main services (space heating, space cooling, domestic hot water and lighting). Data are screened in order to exclude outliers and checked for consistency with the Hellenic NR building stock. The average energy use and CO2 emission intensities for all building uses are calculated, as well as the respective energy ratings in order to gain a better understanding of the NR sector. Finally, in an attempt to determine whether these values are representative for the various Hellenic NR building uses, their temporal evolution is investigated. The average primary energy use intensity is 448.0 kWh/m2 for all NR buildings, while the CO2 emissions reach 147.5 kgCO2/m2. The derived energy baselines reveal that indoor sports halls/swimming pools have the highest energy use, while private cram schools/conservatories have the lowest, due to their operational patterns. Generally, from the four services taken into account, lighting is the most energy consuming, followed by cooling, heating and finally domestic hot water. For a total of 11 building uses, more data from the certificates will be necessary for deriving representative baselines, but, when it comes to buildings categories, more data are required.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012115
Author(s):  
Katarina Simic ◽  
Klaas Thiers ◽  
Hugo Montyne ◽  
Jan Desmet ◽  
Michel De Paepe

Abstract Residential buildings claim a significant share of the total energy use worldwide. In order to have more realistic energy performance predictions, increased attention is paid to the analysis of the building’s energy use through comprehensive, transient detailed numerical simulations. In this article, the self-consumption and self-sufficiency values of three detached residential buildings are assessed through numerical models made in the programming language Modelica and software tool Dymola. The three buildings have the same structure and different space heating energy demands of 15 kWh/m2year, 30 kWh/m2year and 45 kWh/m2year. The energy use of the buildings coincides with the occupancy profile where domestic hot water use dominates over the space heating demand provided by an air to water heat pump. The discrepancy between renewable energy production and energy consumption is mitigated by means of thermal load shifting and electrical energy storage. In this research, the self-consumption and self-sufficiency of the studied buildings have been analysed as a function of the economically favourable energy storage sizing. For the use of an electrical battery with the installed capacity of 2.5 kWh and thermal energy storage of 250 l, the self-sufficiency results to be 40%, 38.5% and 37% for the three buildings respectively at the specific simulated energy demand conditions.


Sign in / Sign up

Export Citation Format

Share Document