Adaptive Visual Servoing of Micro Aerial Vehicle with Switched System Model for Obstacle Avoidance

Author(s):  
Cheng-Ming Huang ◽  
Ming-Li Chiang ◽  
Li-Chen Fu
Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2126
Author(s):  
Ming-Li Chiang ◽  
Shun-Hung Tsai ◽  
Cheng-Ming Huang ◽  
Kuang-Tin Tao

A vision-based adaptive switching controller that uses optical flow information to avoid obstacles for micro unmanned aerial vehicles (MUAV) is proposed in this paper. To use the optical flow to indicate the distance between the MUAV and the environment, we propose an algorithm with multi-thread processing such that the optical flow information is obtained reliably and continuously in the entire camera field of view. The flying behavior of considered MUAV is regarded as a switching system when considering different flying modes during the mission of obstacle avoidance. By the required flight direction for obstacle avoidance specified by the detected optical flow, an adaptive control scheme is designed to track the required trajectory in switching modes. The simulation result shows the tracking performances of the adaptive control with the switching system. The experiment of the whole system is completed to verify the obstacle avoidance capability of our system.


Author(s):  
Hanoch Efraim ◽  
Amir Shapiro ◽  
Moshe Zohar ◽  
Gera Weiss

In this work, we suggest a novel solution to a very specific problem—calculating the pose (position and attitude) of a micro-aerial vehicle (MAV) operating inside corridors and in front of windows. The proposed method makes use of a single image captured by a front facing camera, of specific features whose three-dimensional (3D) model is partially known. No prior knowledge regarding the size of the corridor or the window is needed, nor is the ratio between their width and height. The position is calculated up to an unknown scale using a gain scheduled iterative algorithm. In order to compensate for the unknown scale, an adaptive controller that ensures consistent closed loop behavior is suggested. The attitude calculation can be used as is, or the results can be fused with angular velocity sensors to achieve better estimation. In this paper, the algorithm is presented and the approach is demonstrated with simulations and experiments.


2012 ◽  
Author(s):  
James Joo ◽  
Gregory Reich ◽  
James Elgersma ◽  
Kristopher Aber

Author(s):  
Jinwoo Jeon ◽  
Sungwook Jung ◽  
Eungchang Lee ◽  
Duckyu Choi ◽  
Hyun Myung

2021 ◽  
pp. 106891
Author(s):  
Chengbin Chen ◽  
Sifan Chen ◽  
Guangsheng Hu ◽  
Baihe Chen ◽  
Pingping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document