Spatial diversity with a new sequential maximal ratio combining over wireless fading channels

Author(s):  
Yawgeng A. Chau ◽  
Karl Y. Huang
Author(s):  
Nguyen Hong Giang ◽  
Vo Nguyen Quoc Bao ◽  
Hung Nguyen-Le

This paper analyzes the performance of a cognitive underlay system over Nakagami-m fading channels, where maximal ratio combining (MRC) is employed at secondary destination and relay nodes. Under the condition of imperfect channel state information (CSI) of interfering channels, system performance metrics for the primary network and for the secondary network are formulated into exact and approximate expressions, which can be served as theoretical guidelines for system designs. To verify the performance analysis, several analytical and simulated results of the system performance are provided under various system and channel settings.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Shichuan Ma ◽  
Lim Nguyen ◽  
Won Mee Jang ◽  
Yaoqing (Lamar) Yang

Self-encoded spread spectrum (SESS) is a novel communication technique that derives its spreading code from the randomness of the source stream rather than using conventional pseudorandom noise (PN) code. In this paper, we propose to incorporate SESS in multiple-input multiple-output (MIMO) systems as a means to combat against fading effects in wireless channels. Orthogonal space-time block-coded MIMO technique is employed to achieve spatial diversity, and the inherent temporal diversity in SESS modulation is exploited with iterative detection. Simulation results demonstrate that MIMO-SESS can effectively mitigate the channel fading effect such that the system can achieve a bit error rate of with very low signal-to-noise ratio, from 3.3 dB for a antenna configuration to just less than 0 dB for a configuration under Rayleigh fading. The performance improvement for the case is as much as 6.7 dB when compared to an MIMO PN-coded spread spectrum system.


2021 ◽  
Vol 8 (1) ◽  
pp. 33-44
Author(s):  
Toufik Chaayra ◽  
Hussain Ben-azza ◽  
Faissal El Bouanani

Evaluating the sum of independent and not necessarily identically distributed (i.n.i.d) random variables (RVs) is essential to study different variables linked to various scientific fields, particularly, in wireless communication channels. However, it is difficult to evaluate the distribution of this sum when the number of RVs increases. Consequently, the complex contour integral will be difficult to determine. Considering this issue, a more accurate approximation of the distribution function is required. By assuming the probability density function (PDF) of a generalized gamma (GG) RV evaluated in terms of a proper subset H1,0 1,1 class of Fox’s H-function (FHF) and the moment-based approximation to estimate the FHF parameters, a closed-form tight approximate expression for the distribution of the sum of i.n.i.d GG RVs and a sufficient condition for the convergence are investigated. The proposed approximate may be an analytical useful tool for analyzing the performance of certain numbers branch maximal-ratio combining receivers subject to GG fading channels. Hence, various closed-form performance metrics are derived and examined in terms of FHF. Numerical simulations are carried out to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document