scholarly journals MIMO Self-Encoded Spread Spectrum with Iterative Detection over Rayleigh Fading Channels

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Shichuan Ma ◽  
Lim Nguyen ◽  
Won Mee Jang ◽  
Yaoqing (Lamar) Yang

Self-encoded spread spectrum (SESS) is a novel communication technique that derives its spreading code from the randomness of the source stream rather than using conventional pseudorandom noise (PN) code. In this paper, we propose to incorporate SESS in multiple-input multiple-output (MIMO) systems as a means to combat against fading effects in wireless channels. Orthogonal space-time block-coded MIMO technique is employed to achieve spatial diversity, and the inherent temporal diversity in SESS modulation is exploited with iterative detection. Simulation results demonstrate that MIMO-SESS can effectively mitigate the channel fading effect such that the system can achieve a bit error rate of with very low signal-to-noise ratio, from 3.3 dB for a antenna configuration to just less than 0 dB for a configuration under Rayleigh fading. The performance improvement for the case is as much as 6.7 dB when compared to an MIMO PN-coded spread spectrum system.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Pedro Cervantes-Lozano ◽  
Luis F. González-Pérez ◽  
Andrés D. García-García

This paper presents a VLSI architecture for the suboptimal hard-output Vertical-Bell Laboratories Layered Space-Time (V-BLAST) algorithm in the context of Spatial Multiplexing Multiple-Input Multiple-Output (SM-MIMO) systems immersed in Rayleigh fading channels. The design and implementation of its corresponding data-path and control-path components over FPGA devices are considered. Results on synthesis, bit error rate performance, and data throughput are reported.


2019 ◽  
Vol 9 (21) ◽  
pp. 4624
Author(s):  
Uzokboy Ummatov ◽  
Kyungchun Lee

This paper proposes an adaptive threshold-aided K-best sphere decoding (AKSD) algorithm for large multiple-input multiple-output systems. In the proposed scheme, to reduce the average number of visited nodes compared to the conventional K-best sphere decoding (KSD), the threshold for retaining the nodes is adaptively determined at each layer of the tree. Specifically, we calculate the adaptive threshold based on the signal-to-noise ratio and index of the layer. The ratio between the first and second smallest accumulated path metrics at each layer is also exploited to determine the threshold value. In each layer, in addition to the K paths associated with the smallest path metrics, we also retain the paths whose path metrics are within the threshold from the Kth smallest path metric. The simulation results show that the proposed AKSD provides nearly the same bit error rate performance as the conventional KSD scheme while achieving a significant reduction in the average number of visited nodes, especially at high signal-to-noise ratios.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Kasturi Vasudevan ◽  
A. Phani Kumar Reddy ◽  
Gyanesh Kumar Pathak ◽  
Shivani Singh

Detecting the presence of a valid signal is an important task of a telecommunication receiver. When the receiver is unable to detect the presence of a valid signal, due to noise and fading, it is referred to as an erasure. This work deals with the probability of erasure computation for orthogonal frequency division multiplexed (OFDM) signals used by multiple input multiple output (MIMO) systems. The theoretical results are validated by computer simulations. OFDM is widely used in present day wireless communication systems due to its ability to mitigate intersymbol interference (ISI) caused by frequency selective fading channels. MIMO systems offer the advantage of spatial multiplexing, resulting in increased bit-rate, which is the main requirement of the recent wireless standards like 5G and beyond.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 573 ◽  
Author(s):  
Menghan Wang ◽  
Dongming Wang

This paper presents some exact results on the sum-rate of multi-user multiple-input multiple-output (MU-MIMO) systems subject to multi-cell pilot contamination under correlated Rayleigh fading. With multi-cell multi-user channel estimator, we give the lower bound of the sum-rate. We derive the moment generating function (MGF) of the sum-rate and then obtain the closed-form approximations of the mean and variance of the sum-rate. Then, with Gaussian approximation, we study the outage performance of the sum-rate. Furthermore, considering the number of antennas at base station becomes infinite, we investigate the asymptotic performance of the sum-rate. Theoretical results show that compared to MU-MIMO system with perfect channel estimation and no pilot contamination, the variance of the sum-rate of the considered system decreases very quickly as the number of antennas increases.


2017 ◽  
Vol 16 (2) ◽  
pp. 66 ◽  
Author(s):  
Kadek Agus Mahabojana Dwi Prayoga ◽  
Ni Made Ary Esta Dewi Wirastuti ◽  
I Gst A. Komang Diafari Djuni Hartawan

Kombinasi antara sistem MIMO (multiple input multiple output), OFDM (orthogonal frequency division multiplexing), dan spread spectrum serta adanya teknik pengkodean kanal mampu mengurangi efek fading dan error yang terjadi. Penelitian ini bertujuan untuk mengetahui perbandingan performansi dari sistem MIMO MC-DSSS (multi carrier-direct sequence spread spectrum) Uncoded atau tanpa pengkodean kanal dan MIMO MC-DSSS Convolutional Code atau dengan pengkodean kanal Convolutional yang melalui kanal Rayleigh Fading, ditinjau dari nilai dan grafik BER (bit error rate) berbanding Eb/No (energy per bit to noise power spectral density ratio). Penelitian ini menggunakan metode simulasi dengan menggunakan program Matlab R2015a. Hasil dari simulasi didapat unjuk kerja sistem MIMO MC-DSSS dengan Convolutional Code memiliki hasil yang lebih baik dari MIMO MC-DSSS. Pada kanal transmisi Rayleigh Fading untuk mencapi nilai BER sebesar 10-3 pada sistem MIMO MC-DSSS dengan Convolutional Code dibutuhkan Eb/No sebesar -7 dB. Sedangkan pada sistem MIMO MC-DSSS dibutuhkan Eb/No sebesar -3 dB.[turnitin 20%, 7-11-2016]


2019 ◽  
Vol 8 (3) ◽  
pp. 5831-5836

High information rates inside the restricted frequency (RF) spectrum is often fascinating that results in radios with capabilities on the far side a single-input single-output (SISO) topology. In recent days introduced wireless systems have adopted multiple-input multiple-output (MIMO) topologies that use 2 or more transmitters and 2 or more receivers to send information at the same time over same RF bandwidth. The performance of MIMO system may be improved by involving multiple antennas at transmitter and receiver therefore on offer spatial diversity. during this paper, the performance analysis of MIMO system over AWGN attenuation channel and Rician Channel with ZF receiver is bestowed. The consequences of the antenna choice can even be analyzed from the simulated results. The BER (Bit Error Rate) performance characteristics of ZeroForcing (ZF) receiver is investigated for M-PSK modulation technique over the AWGN channel and Rician Channel.


Author(s):  
Sirichai Hemrungrote ◽  
Toshikazu Hori ◽  
Mitoshi Fujimoto ◽  
Kentaro Nishimori

Multiple-Input Multiple-Output (MIMO) wireless communication technology is expected to improve the channel capacity over the limited bandwidth of existing networks. Since urban MIMO systems have complex propagation characteristics, the channel capacity cannot be estimated using a simple method. Hence, we introduce channel capacity characteristics to urban MIMO systems by using a combination of imaging and ray-launching methods as a ray-tracing scheme. A simulation based on these methods with variable parameters can reproducibly estimate various urban propagation characteristics and discriminate the effects of the urban model and antenna configurations. The characteristics of the Signal-to-Noise Ratio (SNR), the channel capacity, the spatial correlation, as well as the path visibility are then determined from the results of the simulation. The parameter called path visibility introduced in our previous study is considered again herein. We clarify that only this single parameter can be used to determine the channel capacity characteristics in urban MIMO scenarios. This parameter also provides guidance in determining the appropriate range for the base station (BS) height.


2019 ◽  
Vol 8 (3) ◽  
pp. 3272-3277

Multiple-Input-Multiple-Output (MIMO) system improves performance as well as the capacity of the wireless system. The use of large number of antennas in a MIMO system increases the hardware complexities and also its price. To overcome this, MIMO systems that activate single transmit antenna at a time, namely transmit antenna selection (TAS) is considered in this paper. Selection combining (SC) and Maximal ratio combining (MRC) are carried out at the receiver over    fading channels. Expressions for outage probability and average bit error rate (ABER) are derived considering TAS/SC as well as TAS/MRC MIMO systems. All the derived expressions are validated by Monte-Carlo simulation results.


Sign in / Sign up

Export Citation Format

Share Document