Offline Automatic Parameter Tuning of MOEA/D Using Genetic Algorithm

Author(s):  
Lie Meng Pang ◽  
Hisao Ishibuchi ◽  
Ke Shang
2018 ◽  
Vol 19 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Xuemin Xia ◽  
Simin Jiang ◽  
Nianqing Zhou ◽  
Xianwen Li ◽  
Lichun Wang

Abstract Groundwater pollution has been a major concern for human beings, since it is inherently related to people's health and fitness and the ecological environment. To improve the identification of groundwater pollution, many optimization approaches have been developed. Among them, the genetic algorithm (GA) is widely used with its performance depending on the hyper-parameters. In this study, a simulation–optimization approach, i.e., a transport simulation model with a genetic optimization algorithm, was utilized to determine the pollutant source fluxes. We proposed a robust method for tuning the hyper-parameters based on Taguchi experimental design to optimize the performance of the GA. The effectiveness of the method was tested on an irregular geometry and heterogeneous porous media considering steady-state flow and transient transport conditions. Compared with traditional GA with default hyper-parameters, our proposed hyper-parameter tuning method is able to provide appropriate parameters for running the GA, and can more efficiently identify groundwater pollution.


2013 ◽  
Vol 01 (01) ◽  
pp. 41-60 ◽  
Author(s):  
Adam Harmat ◽  
Michael Trentini ◽  
Inna Sharf

In this paper, we describe a new jumping behaviour developed for the quadruped robot, PAW (Platform for Ambulating Wheels). The robot has very few degrees of freedom and no knee joints. It employs springy legs and wheels at the distal ends of the legs to achieve various modes of legged, wheeled, and hybrid locomotion, such as high-speed breaking, bounding, and presently jumping. The jumping maneuver developed in this manuscript is designed specifically to take advantage of the wheels on the robot and compliance in its legs and it involves the following principal stages: acceleration to jumping speed, body positioning via front hip thrusting, rear leg compression and thrusting, and flight. A high-fidelity MSC.ADAMS/Simulink co-simulation was developed and used to test and optimize the jumping process. Because of the strong coupling between the parameters defining the jump maneuver, manual parameter tuning is difficult and thus a genetic algorithm is employed for the optimization process. The data generated by the genetic algorithm is further used for the fitting of a quadratic response surface, which allows identifying those parameters that contribute most to a successful jump. Finally, the jumping maneuver is implemented on the physical PAW to demonstrate its feasibility on a hybrid quadruped, and to provide insights into the robot response during this highly dynamic maneuver.


Author(s):  
L-Y Kuo ◽  
J-Y Yen

This paper addresses an automatic parameter-tuning algorithm for the multi-axis motion control of a computer numerical control (CNC) machine centre. The traditional approach to tune the control parameters in the multi-axis machines is to tune each axis independently. Some high-end-precision machines offer cross-axis motion parameters for impedance compensation but this is usually not satisfactory for practical purpose. Because each axis on the machine centre contributes to more than one working plane, obtaining the optimal performance for motions involving more than one plane often results in axis coupling. This paper introduces a systematic method to tune the servo parameters for multi-axis motion control. The tuning algorithm is based upon an intelligent genetic algorithm (GA) and the parameters are tuned for each work plane. The method optimized the multi-axis motion performance. A modified GA is also proposed to solve the convergence problem induced by a large number of parameters in multi-axis motion tuning.


2014 ◽  
Vol 18 ◽  
pp. 185-195 ◽  
Author(s):  
E. Yeguas ◽  
M.V. Luzón ◽  
R. Pavón ◽  
R. Laza ◽  
G. Arroyo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document