Application of a multiobjective evolutionary algorithm for optimal location and parameters of FACTS devices considering the real power loss in transmission lines and voltage deviation buses

Author(s):  
I. Marouani ◽  
T. Guesmi ◽  
H. Hadj Abdallah ◽  
A. Ouali
2018 ◽  
Vol 7 (4.6) ◽  
pp. 203
Author(s):  
N. Karuppiah ◽  
S. Muthubalaji ◽  
S. Ravivarman ◽  
Md. Asif ◽  
Abhishek Mandal

Flexible Alternating Current Transmission System devices have numerous applications in electrical transmission lines like improvement of voltage stability, reactive power compensation, congestion management, Available Transfer Capacity enhancement, real power loss reduction, voltage profile improvement and much more. The effectiveness of these FACTS devices is enhanced by the placement of these devices in the transmission lines. The placement is based on transmission line sensitivity factors such as Bus voltage stability index and line voltage stability index. This research article focuses on optimizing the location, number and ratings of FACTS devices using Evolutionary Algorithms like Bacterial Foraging Algorithm and Gravitational search algorithm. FACTS devices such as Static Var Compensator, Thyristor Controlled Series Capacitor and Unified Power Flow Controller are placed on IEEE 14 bus and IEEE 30 bus systems for reducing the real power loss in the transmission system. The results show that the performance of the transmission lines is enhanced more using Bacterial Foraging Algorithm than Gravitational Search Algorithm.  


Author(s):  
Kanagasabai Lenin

This paper proposes Enhanced Frog Leaping Algorithm (EFLA) to solve the optimal reactive power problem. Frog leaping algorithm (FLA) replicates the procedure of frogs passing though the wetland and foraging deeds. Set of virtual frogs alienated into numerous groups known as “memeplexes”. Frog’s position’s turn out to be closer in every memeplex after few optimization runs and certainly, this crisis direct to premature convergence. In the proposed Enhanced Frog Leaping Algorithm (EFLA) the most excellent frog information is used to augment the local search in each memeplex and initiate to the exploration bound acceleration. To advance the speed of convergence two acceleration factors are introduced in the exploration plan formulation. Proposed Enhanced Frog Leaping Algorithm (EFLA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.


2018 ◽  
Vol 6 (4) ◽  
pp. 301-311
Author(s):  
K. Lenin

In this paper Enhanced Spider (ES) algorithm is proposed to solve reactive power Problem. Enthused by the spiders, a new Enhanced Spider (ES) algorithm is utilized to solve reactive power problem. The composition is primarily based on the foraging approach of social spiders, which make use of of the vibrations spread over the spider web to choose the position of prey. The simulation results demonstrate high-quality performance of Enhanced Spider (ES) algorithm in solving reactive power problem.  The projected Enhanced Spider (ES) algorithm has been tested in standard IEEE 57,118 bus systems and compared to other reported standard algorithms. Results show that Enhanced Spider (ES) algorithm is more efficient than other algorithms in reducing the real power loss.


Author(s):  
Lenin Kanagasabai

In this paper Cinnamon ibon Search Optimization Algorithm (CSOA) is used for solving the power loss lessening problem. Key objectives of the paper are Real power Loss reduction, Voltage stability enhancement and minimization of Voltage deviation. Searching and scavenging behavior of Cinnamon ibon has been imitated to model the algorithm. Cinnamon ibon birds which are in supremacy of the group are trustworthy to be hunted by predators and dependably attempt to achieve a improved position and the Cinnamon ibon ones that are positioned in the inner of the population, drive adjacent to the nearer populations to dodge the threat of being confronted. The systematic model of the Cinnamon ibon search Algorithm originates with an arbitrary individual of Cinnamon ibon. The Cinnamon ibon search algorithm entities show the position of the Cinnamon ibon. Besides, the Cinnamon ibon bird is supple in using the cooperating plans and it alternates between the fabricator and the cadger. Successively the Cinnamon ibon identifies the predator position; then they charm the others by tweeting signs. The cadgers would be focussed to the imperilled regions by fabricators once the fear cost is more than the defence threshold. Likewise, the subterfuge of both the cadger and the fabricator is commonly used by Cinnamon ibon. The dispersion of the Cinnamon ibon location in the solution area is capricious. An impulsive drive approach was applied when dispossession of any adjacent Cinnamon ibon in the purlieu of the present population. This style diminishes the convergence tendency and decreases the convergence inexorableness grounded on the controlled sum of iterations. Authenticity of the Cinnamon ibon Search Optimization Algorithm (CSOA) is corroborated in IEEE 30 bus system (with and devoid of L-index). Genuine power loss lessening is attained. Proportion of actual power loss lessening is amplified.


2017 ◽  
Vol 5 (10) ◽  
pp. 101-111
Author(s):  
K. Lenin

This paper proposes Spinner Dolphin Algorithm (SDA) for solving optimal reactive power problem. Echolocation is the genetic sonar used by Spinner dolphin & it used by few kinds of other animals for direction-finding, hunting in diverse environments. This ability of Spinner dolphin is imitated in this paper to develop a new-fangled procedure for solving optimal reactive power problem. Spinner Dolphin Algorithm (SDA) takes reward of the overriding rules and outperforms many vigorous optimization methods. The new-fangled approach SDA leads to exceptional results with small computational efforts. In order to evaluate the efficiency of the proposed algorithm, it has been tested Standard IEEE 57,118 bus systems and compared to other specified algorithms. Simulation result show that Spinner Dolphin Algorithm (SDA) is advanced to other algorithms in reducing the real power loss and voltage profiles are within the limits


Author(s):  
Lenin Kanagasabai

<span>In this work two ground-breaking algorithms called; Sperm Motility (SM) algorithm &amp; Wolf Optimization (WO) algorithm is used for solving reactive power problem. In sperm motility approach spontaneous movement of the sperm is imitated &amp; species chemo attractant, sperms are enthralled in the direction of the ovum. In wolf optimization algorithm the deeds of wolf is imitated in the formulation &amp; it has a flag vector also length is equivalent to the whole sum of numbers in the dataset the optimization. Both the projected algorithms have been tested in standard IEEE 57,118, 300 bus test systems. Simulated outcomes reveal about the reduction of real power loss &amp; with variables are in the standard limits. Almost both algorithms solved the problem efficiently, yet wolf optimization has slight edge over the sperm motility algorithm in reducing the real power loss.</span>


2017 ◽  
Vol 5 (9) ◽  
pp. 206-216
Author(s):  
K. Lenin

In this paper Enhanced Mine Blast (EMB) algorithm which based on mine bomb explosion concept is proposed to solve optimal reactive power problem.The clue of the projected Enhanced Mine Blast (EMB) algorithm is based on the examination of a mine bomb explosion, in which the thrown pieces of shrapnel crash with other mine bombs near the explosion area resulting in their explosion. In this paper convergence speed has been enhanced. Proposed Enhanced Mine Blast (EMB) algorithm has been tested in standard IEEE 118 & practical 191 bus test systems and simulation results show clearly the superior performance of the projected Enhanced Mine Blast (EMB) algorithm in reducing the real power loss.


Author(s):  
SAURABH K. SINGH ◽  
V. P. RAJDERKAR

FACTS is one aspect of the power electronics revolution that is taking place in all areas of electric energy. FACTS devices can be an alternative to reduce the flows in heavily loaded lines, resulting in an increased loadability, low system loss, improved stability of the network, reduced cost of production and fulfilled contractual requirement by controlling the power flows in the network. This paper investigates a methodology for placement of thyristor controlled phase angle regulator (TCPAR) in order to relieve congestion in the transmission lines while increasing static security margin and voltage profile of a given power system. Sensitivity-Based Methodology is opted for finding the optimal location The effectiveness of the purposed methods is demonstrated on modified IEEE 30-bus system by using Power World Simulator Software version 12.0.


Sign in / Sign up

Export Citation Format

Share Document