Beyond ℓ1-norm minimization for sparse signal recovery

Author(s):  
Hassan Mansour
Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 583 ◽  
Author(s):  
Jianhong Xiang ◽  
Huihui Yue ◽  
Xiangjun Yin ◽  
Guoqing Ruan

Sparse-signal recovery in noisy conditions is a problem that can be solved with current compressive-sensing (CS) technology. Although current algorithms based on L 1 regularization can solve this problem, the L 1 regularization mechanism cannot promote signal sparsity under noisy conditions, resulting in low recovery accuracy. Based on this, we propose a regularized reweighted composite trigonometric smoothed L 0 -norm minimization (RRCTSL0) algorithm in this paper. The main contributions of this paper are as follows: (1) a new smoothed symmetric composite trigonometric (CT) function is proposed to fit the L 0 -norm; (2) a new reweighted function is proposed; and (3) a new L 0 regularization objective function framework is constructed based on the idea of T i k h o n o v regularization. In the new objective function framework, Contributions (1) and (2) are combined as sparsity regularization terms, and errors as deviation terms. Furthermore, the conjugate-gradient (CG) method is used to optimize the objective function, so as to achieve accurate recovery of sparse signal and image under noisy conditions. The numerical experiments on both the simulated and real data verify that the proposed algorithm is superior to other state-of-the-art algorithms, and achieves advanced performance under noisy conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Zhi Han ◽  
Jianjun Wang ◽  
Jia Jing ◽  
Hai Zhang

We present a probabilistic analysis on conditions of the exact recovery of block-sparse signals whose nonzero elements appear in fixed blocks. We mainly derive a simple lower bound on the necessary number of Gaussian measurements for exact recovery of such block-sparse signals via the mixedl2/lq  (0<q≤1)norm minimization method. In addition, we present numerical examples to partially support the correctness of the theoretical results. The obtained results extend those known for the standardlqminimization and the mixedl2/l1minimization methods to the mixedl2/lq  (0<q≤1)minimization method in the context of block-sparse signal recovery.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jianhong Xiang ◽  
Huihui Yue ◽  
Xiangjun Yin ◽  
Linyu Wang

Sparse signal reconstruction, as the main link of compressive sensing (CS) theory, has attracted extensive attention in recent years. The essence of sparse signal reconstruction is how to recover the original signal accurately and effectively from an underdetermined linear system equation (ULSE). For this problem, we propose a new algorithm called regularization reweighted smoothed L0 norm minimization algorithm, which is simply called RRSL0 algorithm. Three innovations are made under the framework of this method: (1) a new smoothed function called compound inverse proportional function (CIPF) is proposed; (2) a new reweighted function is proposed; and (3) a mixed conjugate gradient (MCG) method is proposed. In this algorithm, the reweighted function and the new smoothed function are combined as the sparsity promoting objective, and the constraint condition y-Φx22 is taken as a deviation term. Both of them constitute an unconstrained optimization problem under the Tikhonov regularization criterion and the MCG method constructed is used to optimize the problem and realize high-precision reconstruction of sparse signals under noise conditions. Sparse signal recovery experiments on both the simulated and real data show the proposed RRSL0 algorithm performs better than other popular approaches and achieves state-of-the-art performances in signal and image processing.


AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065131
Author(s):  
Bingsen Xue ◽  
Xingming Zhang ◽  
Yunzhe Xu ◽  
Yehui Li ◽  
Hongpeng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document