LabVIEW based automatic paralleling of synchronous generator system

Author(s):  
O. D. Momoh ◽  
S. J. Loeffler ◽  
N. J. Dykhuizen ◽  
I. Hack ◽  
G. D. Steffen
Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1697 ◽  
Author(s):  
Lingling Li ◽  
Hengyi Li ◽  
Ming-Lang Tseng ◽  
Huan Feng ◽  
Anthony S. F. Chiu

This study constructs a novel virtual synchronous generator system based on a transfer function, and optimizes the parameters of the model by using the improved whale algorithm to improve the frequency control ability of virtual synchronous generator. Virtual synchronous generator technology helps to solve the problem that the integration of large-scale renewable energy generation into the power system leads to the deterioration of system frequency stability. It can maintain the symmetry of grid-connected scale and system stability. The virtual synchronous generator technology makes the inverter to have the inertia and damping characteristics of a synchronous generator. The inverter has the inertia characteristics and damps to reduce the frequency instability of high penetration renewable energy power system. The improved whale algorithm is efficient to find the best combination of control parameters and the effectiveness of the algorithm is verified by microgrid and power system. The results show that the proposed frequency coordination control scheme suppresses the frequency deviation of power system and keep the system frequency in a reasonable range.


2018 ◽  
Vol 10 (11) ◽  
pp. 4333
Author(s):  
Youping Fan ◽  
Dai Zhang ◽  
Jingjiao Li

The aim of this work was to design and build a control system to control the performance of the Pelton wheel and synchronous generator system at different upstream water flow and electrical load conditions. The turbine output power is determined by the upstream water flow and spear valve, whilst the generator output power is determined by the turbine output power and the electrical load. A spear valve is used to control the generator output power at different water and load conditions. An autotuning proportion integration (PI) arithmetic-based controller was built using a relay feedback tuning method. An on–off relay was used in the program in order to oscillate the system. The optimal PI gains can be estimated via the Ziegler–Nichols method. A fully open test was used to test the tuned PI gains. The performance of the original gains and the new tuned gains were discussed. A controller was used to maintain the frequency or voltage of the output power by automatic regulation of the turbine valve. The program could search for the maximum generation efficiency by entering the output current value of the generator into the program manually.


2013 ◽  
Vol 724-725 ◽  
pp. 459-462
Author(s):  
Jia Ying Zhang ◽  
Li Ping Zhang ◽  
Gui Ling Xiao

Direct drive permanent magnet synchronous generator have the advantages of direct drive, simple structure, high efficiency and so on, in which make it become one of mainstream models within MW wind turbine presently. Making the direct drive permanent magnet wind power generation system as the main research object, based on the principle of the operating characteristics of direct drive permanent magnet synchronous wind generator ( DDPMG ), establish mathematical model of the whole system including wind velocity, wind turbine, direct drive permanent magnet synchronous generator and machine side converter, Appling the method of stator flux orientation to make the study of vector control strategy, to build the simulation model of direct drive permanent magnet synchronous generator system with Matlab and simulate when wind speed changes by step, the results validate the reasonableness of the model and the correctness and feasibility of the control strategy.


1992 ◽  
Vol 25 (1) ◽  
pp. 335-340 ◽  
Author(s):  
B.W. Hogg ◽  
A.R. Mahran ◽  
A.M. Serag ◽  
S.M. Sharaf

Sign in / Sign up

Export Citation Format

Share Document