Realization of Contactless Elevator Control Panel System Based on Voice Interaction Technology

Author(s):  
Yan Liu ◽  
Wenqing Wang ◽  
Yanwei Li
Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 132-139
Author(s):  
Ivan E. Kurilenko ◽  
◽  
Igor E. Nikonov ◽  

A method for solving the problem of classifying short-text messages in the form of sentences of customers uttered in talking via the telephone line of organizations is considered. To solve this problem, a classifier was developed, which is based on using a combination of two methods: a description of the subject area in the form of a hierarchy of entities and plausible reasoning based on the case-based reasoning approach, which is actively used in artificial intelligence systems. In solving various problems of artificial intelligence-based analysis of data, these methods have shown a high degree of efficiency, scalability, and independence from data structure. As part of using the case-based reasoning approach in the classifier, it is proposed to modify the TF-IDF (Term Frequency - Inverse Document Frequency) measure of assessing the text content taking into account known information about the distribution of documents by topics. The proposed modification makes it possible to improve the classification quality in comparison with classical measures, since it takes into account the information about the distribution of words not only in a separate document or topic, but in the entire database of cases. Experimental results are presented that confirm the effectiveness of the proposed metric and the developed classifier as applied to classification of customer sentences and providing them with the necessary information depending on the classification result. The developed text classification service prototype is used as part of the voice interaction module with the user in the objective of robotizing the telephone call routing system and making a shift from interaction between the user and system by means of buttons to their interaction through voice.


2018 ◽  
Vol 180 ◽  
pp. 05006
Author(s):  
Zofia Wróbel

The valuation of the risk of losses makes easy the correct estimation of resulted threats as a result of atmospheric discharges and harms connected to them. Qualifying the need of lightning protection use for the object, we ought to take into account the risk R for the object and for the public services devices. In every case of examining risks we ought to fulfill: the identification of components RX forming the risk, counting the identified components of the risk RX, the entire risk R, identify the tolerated risk RT and compare the risk R with the tolerated value RT. As a result of such analysis we can come to a decision about the use of protection resources. In the report was realized the risk analysis of devices damages for a chosen object - the signal box with installed station - relaying devices of the railway traffic controlling with a computer adjustable control panel. From the realized analysis results that DEHN Risk Tool is a useful tool for the risk analysis of lightning losses in buildings, making possible the improvement of the calculations process, especially in the range of the choice of proper protection resources.


2021 ◽  
pp. 104687812110082
Author(s):  
Omamah Almousa ◽  
Ruby Zhang ◽  
Meghan Dimma ◽  
Jieming Yao ◽  
Arden Allen ◽  
...  

Objective. Although simulation-based medical education is fundamental for acquisition and maintenance of knowledge and skills; simulators are often located in urban centers and they are not easily accessible due to cost, time, and geographic constraints. Our objective is to develop a proof-of-concept innovative prototype using virtual reality (VR) technology for clinical tele simulation training to facilitate access and global academic collaborations. Methodology. Our project is a VR-based system using Oculus Quest as a standalone, portable, and wireless head-mounted device, along with a digital platform to deliver immersive clinical simulation sessions. Instructor’s control panel (ICP) application is designed to create VR-clinical scenarios remotely, live-stream sessions, communicate with learners and control VR-clinical training in real-time. Results. The Virtual Clinical Simulation (VCS) system offers realistic clinical training in virtual space that mimics hospital environments. Those VR clinical scenarios are customizable to suit the need, with high-fidelity lifelike characters designed to deliver interactive and immersive learning experience. The real-time connection and live-stream between ICP and VR-training system enables interactive academic learning and facilitates access to tele simulation training. Conclusions. VCS system provides innovative solutions to major challenges associated with conventional simulation training such as access, cost, personnel, and curriculum. VCS facilitates the delivery of academic and interactive clinical training that is similar to real-life settings. Tele-clinical simulation systems like VCS facilitate necessary academic-community partnerships, as well as global education network between resource-rich and low-income countries.


2021 ◽  
Vol 9 (2) ◽  
pp. 142-150
Author(s):  
Ivan Guschin ◽  
Anton Leschinskiy ◽  
Andrey Zhukov ◽  
Alexander Zarukin ◽  
Vyacheslav Kiryukhin ◽  
...  

The results of the development of a radiation-tolerant robotic complex URS-2 for operation in hot cells at nuclear enterprises are presented. The robotic complex consists of several original components: robotic arm, control device with force feedback, control panel with hardware buttons and touch screen, control computer with system and application software, control-and-power cabinet. The robotic manipulator has 6 degrees of freedom, replaceable pneumatic grippers and is characterized by high radiation tolerance, similar to that of mechanical master-slave manipulators. The original design of the control device based on the delta-robot model that implements a copying mode of manual control of the robotic complex with force feedback is presented. The hardware and software solutions developed has made it possible to create a virtual simulator of the RTC for testing innovative methods of remote control of the robot, as well as teaching operators to perform technological tasks in hot cells. The experimental model of the robotic complex has demonstrated the ability to perform basic technological tasks in a demo hot cell, both in manual and automatic modes.


Sign in / Sign up

Export Citation Format

Share Document