Multi-agent residential demand response based on load forecasting

Author(s):  
Ivana Dusparic ◽  
Colin Harris ◽  
Andrei Marinescu ◽  
Vinny Cahill ◽  
Siobhan Clarke
Author(s):  
Robin Roche ◽  
Siddharth Suryanarayanan ◽  
Timothy M. Hansen ◽  
Sila Kiliccote ◽  
Abdellatif Miraoui

2016 ◽  
Vol 96 ◽  
pp. 63-72 ◽  
Author(s):  
Fatemeh Golpayegani ◽  
Ivana Dusparic ◽  
Adam Taylor ◽  
Siobhán Clarke

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


2021 ◽  
Vol 9 (1) ◽  
pp. 36-44
Author(s):  
Robert Mieth ◽  
Samrat Acharya ◽  
Ali Hassan ◽  
Yury Dvorkin

Author(s):  
Xiao Kou ◽  
Yan Du ◽  
Fangxing Li ◽  
Hector Pulgar-Painemal ◽  
Helia Zandi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2795
Author(s):  
Nikolaos Iliopoulos ◽  
Motoharu Onuki ◽  
Miguel Esteban

Residential demand response empowers the role of electricity consumers by allowing them to change their patterns of consumption, which can help balance the energy grid. Although such type of management is envisaged to play an increasingly important role in the integration of renewables into the grid, the factors that influence household engagement in these initiatives have not been fully explored in Japan. This study examines the influence of interpersonal, intrapersonal, and socio-demographic characteristics of households in Yokohama on their willingness to participate in demand response programs. Time of use, real time pricing, critical peak pricing, and direct load control were considered as potential candidates for adoption. In addition, the authors explored the willingness of households to receive non-electricity related information in their in-home displays and participate in a philanthropy-based peer-to-peer energy platform. Primary data were collected though a questionnaire survey and supplemented by key informant interviews. The findings indicate that household income, ownership of electric vehicles, socio-environmental awareness, perceived sense of comfort, control, and complexity, as well as philanthropic inclinations, all constitute drivers that influence demand flexibility. Finally, policy recommendations that could potentially help introduce residential demand response programs to a wider section of the public are also proposed.


Author(s):  
Hessam Golmohamadi ◽  
Reza Keypour ◽  
Birgitte Bak-Jensen ◽  
Jayakrishnan R. Pillai

Sign in / Sign up

Export Citation Format

Share Document