scholarly journals Exploiting SCADA system data for wind turbine performance monitoring

Author(s):  
Shane Butler ◽  
John Ringwood ◽  
Frank O'Connor
2021 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Davide Astolfi ◽  
Ravi Pandit

Wind turbine performance monitoring is a complex task because of the non-stationary operation conditions and because the power has a multivariate dependence on the ambient conditions and working parameters. This motivates the research about the use of SCADA data for constructing reliable models applicable in wind turbine performance monitoring. The present work is devoted to multivariate wind turbine power curves, which can be conceived of as multiple input, single output models. The output is the power of the target wind turbine, and the input variables are the wind speed and additional covariates, which in this work are the blade pitch and rotor speed. The objective of this study is to contribute to the formulation of multivariate wind turbine power curve models, which conjugate precision and simplicity and are therefore appropriate for industrial applications. The non-linearity of the relation between the input variables and the output was taken into account through the simplification of a polynomial LASSO regression: the advantages of this are that the input variables selection is performed automatically. The k-means algorithm was employed for automatic multi-dimensional data clustering, and a separate sub-model was formulated for each cluster, whose total number was selected by analyzing the silhouette score. The proposed method was tested on the SCADA data of an industrial Vestas V52 wind turbine. It resulted that the most appropriate number of clusters was three, which fairly resembles the main features of the wind turbine control. As expected, the importance of the different input variables varied with the cluster. The achieved model validation error metrics are the following: the mean absolute percentage error was in the order of 7.2%, and the average difference of mean percentage errors on random subsets of the target data set was of the order of 0.001%. This indicates that the proposed model, despite its simplicity, can be reliably employed for wind turbine power monitoring and for evaluating accumulated performance changes due to aging and/or optimization.


2021 ◽  
Vol 11 (3) ◽  
pp. 1280 ◽  
Author(s):  
Cheng Xiao ◽  
Zuojun Liu ◽  
Tieling Zhang ◽  
Xu Zhang

The converter is an important component in wind turbine power drive-train systems, and usually, it has a higher failure rate. Therefore, detecting the potential faults for prediction of its failure has become indispensable for condition-based maintenance and operation of wind turbines. This paper presents an approach to wind turbine converter fault detection using convolutional neural network models which are developed by using wind turbine Supervisory Control and Data Acquisition (SCADA) system data. The approach starts with the selection of fault indicator variables, and then the fault indicator variables data are extracted from a wind turbine SCADA system. Using the data, radar charts are generated, and the convolutional neural network models are applied to feature extraction from the radar charts and characteristic analysis of the feature for fault detection. Based on the analysis of the Octave Convolution (OctConv) network structure, an improved AOctConv (Attention Octave Convolution) structure is proposed in this paper, and it is applied to the ResNet50 backbone network (named as AOC–ResNet50). It is found that the algorithm based on AOC–ResNet50 overcomes the issues of information asymmetry caused by the asymmetry of the sampling method and the damage to the original features in the high and low frequency domains by the OctConv structure. Finally, the AOC–ResNet50 network is employed for fault detection of the wind turbine converter using 10 min SCADA system data. It is verified that the fault detection accuracy using the AOC–ResNet50 network is up to 98.0%, which is higher than the fault detection accuracy using the ResNet50 and Oct–ResNet50 networks. Therefore, the effectiveness of the AOC–ResNet50 network model in wind turbine converter fault detection is identified. The novelty of this paper lies in a novel AOC–ResNet50 network proposed and its effectiveness in wind turbine fault detection. This was verified through a comparative study on wind turbine power converter fault detection with other competitive convolutional neural network models for deep learning.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 201 ◽  
Author(s):  
Kevin Leahy ◽  
Colm Gallagher ◽  
Peter O’Donovan ◽  
Dominic T. J. O’Sullivan

In order to remain competitive, wind turbines must be reliable machines with efficient and effective maintenance strategies. However, thus far, wind turbine reliability information has been closely guarded by the original equipment manufacturers (OEMs), and turbine reliability studies often rely on data that are not always in a usable or consistent format. In addition, issues with turbine maintenance logs and alarm system data can make it hard to identify historical periods of faulty operation. This means that building new and effective data-driven condition monitoring techniques and methods can be challenging, especially those that rely on supervisory control and data acquisition (SCADA) system data. Such data are rarely standardised, resulting in challenges for researchers in contextualising these data. This work aims to summarise some of the issues seen in previous studies, highlighting the common problems seen by researchers working in the areas of condition monitoring and reliability analysis. Standards and policy initiatives that aim to alleviate some of these problems are given, and a summary of their recommendations is presented. The main finding from this work is that industry would benefit hugely from unified standards for turbine taxonomies, alarm codes, SCADA operational data and maintenance and fault reporting.


2019 ◽  
Vol 131 ◽  
pp. 841-853 ◽  
Author(s):  
Elena Gonzalez ◽  
Bruce Stephen ◽  
David Infield ◽  
Julio J. Melero

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


Sign in / Sign up

Export Citation Format

Share Document