A new traffic flow control method for terminal control area using dioid algebra

Author(s):  
Han Yun-xiang ◽  
Huang Xiao-qiong
2021 ◽  
Vol 24 (6) ◽  
pp. 17-26
Author(s):  
G. A. Gasparyan ◽  
M. V. Kulakov

Holding patterns are established at international airports to make the arriving traffic flow smooth and efficient. One of the main aims of holding patterns is to extend the aircraft arrival route, which allows ATC units to arrange the sequence on the arrival routes more effectively. The article considers the current methods and offers new ideas to improve the efficiency of the inbound traffic flow management using Paths and Terminators concept with HA holding patterns for standard arrival routes at Sheremetyevo Airport. As the main idea for optimizing air traffic management on this stage and reducing the workload on the controller, it is proposed to create extra routes in addition to the existing ones which include holding patterns, that will be used when needed to ensure a well-ordered traffic. The probabilistic method is used to calculate the maximum capacity of existing and proposed arrival routes with holding patterns. The proposed options for restructuring the airspace of the Moscow Terminal Control Area with preserving waypoints of starting standard arrival routes are presented.


2021 ◽  
pp. 1-13
Author(s):  
A. Oren ◽  
O. Sahin

Abstract This study proposes a new operational concept of the Point Merge System, called Multi-Arrival Route Point Merge System (MAR-PMS), which is an air traffic control method used to sequence aircraft arrivals in a given terminal control area. The proposed concept enables the additional arrival routes that have an angular difference to each sequencing leg. Furthermore, a time-indexed 0-1 linear programming model is formulated. The obtained results are validated in a real time simulation. The comparison results of PMS and MAR-PMS show that the average reduction of 19% of total flight time, 23% of total flight distance, and 19% in total fuel burned and reduction in CO2 emissions in favor of a proposed concept.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040142
Author(s):  
Te-Jen Su ◽  
Kun-Liang Lo ◽  
Feng-Chun Lee ◽  
Yuan-Hsiu Chang

Aircraft approaching is the most dangerous phase in every complete flight. To solve the pressure of air traffic controllers and the landings delayed problems caused by the huge air traffic flow in Terminal Control Area (TCA), an automatic Air Traffic Control (ATC) instructions system is initially designed in this paper. It applies the fuzzy theory to make instant and appropriate decisions which can be transmitted via Controller-Pilot Datalink Communications (CPDLC). By means of the designed system, the decision-making time can be saved and the human factors can be reduced to avoid the flight accidents and further delays in aircraft approaching.


2018 ◽  
Vol 138 (3) ◽  
pp. 219-226
Author(s):  
Takuma Takeuchi ◽  
Takehiro Imura ◽  
Daisuke Gunji ◽  
Hiroshi Fujimoto ◽  
Yoichi Hori

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 206820-206834
Author(s):  
Jae-Won Chang ◽  
Hee Seung Moon ◽  
Seung-Il Moon ◽  
Yong Tae Yoon ◽  
Mark B. Glick ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6899
Author(s):  
Abdul Aabid ◽  
Sher Afghan Khan ◽  
Muneer Baig

In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. Passive control was found to be more beneficial in the last four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional control mechanics and objects to control the flow. Therefore, in the last two decades, the active control method has been used via a microjet controller at the base region of the suddenly expanded duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted to investigate the research gap by reviewing the exhaustive work on the active control of high-speed aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle and its configuration is discussed, and the passive control method for the control of flow, jet and noise are represented in order to investigate the existing contributions in supersonic speed applications. A critical review of the last two decades considering the challenges and limitations in this field is expressed. As a contribution, some major and minor gaps are introduced, and we plot the research trends in this field. As a result, this review can serve as guidance and an opportunity for scholars who want to use an active control approach via microjets for supersonic flow problems.


Sign in / Sign up

Export Citation Format

Share Document