Estimation of Complex High-Resolution Range Profiles of Ships by Sparse Recovery Iterative Minimization Method

Author(s):  
Kun Zhang ◽  
Peng-Lang Shui
2014 ◽  
Vol 933 ◽  
pp. 450-455
Author(s):  
Hui Yu ◽  
Guang Hua Lu ◽  
Hai Long Zhang

The high resolution and better recovery performance with distributed MIMO radar would be significantly degraded when the target moves at an unknown velocity. In this paper, we propose an adaptive sparse recovery algorithm for moving target imaging to estimate the velocity and image jointly with high computation efficiency. With an iteration mechanism, the proposed method updates the image and estimates the velocity alternately by sequentially minimizing the norm and the recovery error. Numerical simulations are carried out to demonstrate that the proposed algorithm can retrieve high-resolution image and accurate velocity simultaneously even in low SNR.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4465 ◽  
Author(s):  
Jianfeng Li ◽  
Zheng Li ◽  
Xiaofei Zhang

In this paper, the issue of direction of arrival (DOA) estimation is discussed, and a partial angular sparse representation (SR)-based method using a sparse separate nested acoustic vector sensor (SSN-AVS) array is developed. Traditional AVS array is improved by separating the pressure sensor array and velocity sensor array into two different sparse array geometries with nested relationship. This improved array geometry can achieve large degrees of freedom (DOF) after the extended vectorization of the cross-covariance matrix, and only partial SR of the angle is required by exploiting the cyclic phase ambiguity caused by the large inter-element spacing of the virtual array. Joint sparse recovery is developed to amend the grid offset and unitary transformation is utilized to transform the complex atoms into real-valued ones. After sparse recovery, the sparse vector can simultaneously provide high-resolution but ambiguous angle estimation and unambiguous reference angle estimation embedded in the AVS array, and they are combined to obtain unique and high-resolution DOA estimation. Compared to other state-of-the-art DOA estimation methods using the AVS array, the proposed algorithm can provide better DOA estimation performance while requiring lower complexity. Multiple simulation results verify the effectiveness of the approach.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 217 ◽  
Author(s):  
Dandan Meng ◽  
Xianpeng Wang ◽  
Mengxing Huang ◽  
Chong Shen ◽  
Guoan Bi

Based on weighted block sparse recovery, a high resolution direction-of-arrival (DOA) estimation algorithm is proposed for data with unknown mutual coupling. In our proposed method, a new block representation model based on the array covariance vectors is firstly formulated to avoid the influence of unknown mutual coupling by utilizing the inherent structure of the steering vector. Then a weighted 1l -norm penalty algorithm is proposed to recover the block sparse matrix, in which the weighted matrix is constructed based on the principle of a novel Capon space spectrum function for increasing the sparsity of solution. Finally, the DOAs can be obtained from the position of the non-zero blocks of the recovered sparse matrix. Due to the use of the whole received data of array and the enhanced sparsity of solution, the proposed method effectively avoids the loss of the array aperture to achieve a better estimation performance in the environment of unknown mutual coupling in terms of both spatial resolution and accuracy. Simulation experiments show the proposed method achieves better performance than other existing algorithms to minimize the effects of unknown mutual coupling.


Sign in / Sign up

Export Citation Format

Share Document