The intelligent system server: delivering AI to complex systems

Author(s):  
T. Finin ◽  
R. Fritzson ◽  
R. McEntire ◽  
D. McKay ◽  
A. O'Hare
Author(s):  
Zaiyong Tang ◽  
Xiaoyu Huang ◽  
Kallol Bagchi

An intelligent system is a system that has, similar to a living organism, a coherent set of components and subsystems working together to engage in goal-driven activities. In general, an intelligent system is able to sense and respond to the changing environment; gather and store information in its memory; learn from earlier experiences; adapt its behaviors to meet new challenges; and achieve its pre-determined or evolving objectives. The system may start with a set of predefined stimulusresponse rules. Those rules may be revised and improved through learning. Anytime the system encounters a situation, it evaluates and selects the most appropriate rules from its memory to act upon. Most human organizations such as nations, governments, universities, and business firms, can be considered as intelligent systems. In recent years, researchers have developed frameworks for building organizations around intelligence, as opposed to traditional approaches that focus on products, processes, or functions (e.g., Liang, 2002; Gupta and Sharma, 2004). Today’s organizations must go beyond traditional goals of efficiency and effectiveness; they need to have organizational intelligence in order to adapt and survive in a continuously changing environment (Liebowitz, 1999). The intelligent behaviors of those organizations include monitoring of operations, listening and responding to stakeholders, watching the markets, gathering and analyzing data, creating and disseminating knowledge, learning, and effective decision making. Modeling intelligent systems has been a challenge for researchers. Intelligent systems, in particular, those involve multiple intelligent players, are complex systems where system dynamics does not follow clearly defined rules. Traditional system dynamics approaches or statistical modeling approaches rely on rather restrictive assumptions such as homogeneity of individuals in the system. Many complex systems have components or units which are also complex systems. This fact has significantly increased the difficulty of modeling intelligent systems. Agent-based modeling of complex systems such as ecological systems, stock market, and disaster recovery has recently garnered significant research interest from a wide spectrum of fields from politics, economics, sociology, mathematics, computer science, management, to information systems. Agent-based modeling is well suited for intelligent systems research as it offers a platform to study systems behavior based on individual actions and interactions. In the following, we present the concepts and illustrate how intelligent agents can be used in modeling intelligent systems. We start with basic concepts of intelligent agents. Then we define agent-based modeling (ABM) and discuss strengths and weaknesses of ABM. The next section applies ABM to intelligent system modeling. We use an example of technology diffusion for illustration. Research issues and directions are discussed next, followed by conclusions.


Author(s):  
Gary Klein ◽  
Robert Hoffman ◽  
Shane Mueller ◽  
Emily Newsome

The process of explaining something to another person is more than offering a statement. Explaining means taking the perspective and knowledge of the Learner into account and determining whether the Learner is satisfied. While the nature of explanation—conceived of as a set of statements—has been explored philosophically and empirically, the process of explaining, as an activity, has received less attention. We conducted an archival study, looking at 73 cases of explaining. We were particularly interested in cases in which the explanations focused on the workings of complex systems or technologies. The results generated two models: local explaining to address why a device (such an intelligent system) acted in a surprising way, and global explaining about how a device works. The examination of the processes of explaining as it occurs in natural settings revealed a number of mistaken beliefs about how explaining happens, and what constitutes an explanation that encourages learning.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


Sign in / Sign up

Export Citation Format

Share Document