Time-domain radiation from large two-dimensional apertures via narrow-waisted gaussian beams

2003 ◽  
Vol 51 (1) ◽  
pp. 78-88 ◽  
Author(s):  
V. Galdi ◽  
L.B. Felsen ◽  
D.A. Castanon
2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


Author(s):  
Dong Van Nguyen ◽  
Jaemin Kim

Perfectly matched layer (PML) is known as one of the best methods to simulate infinite domains in many fields such as soil-structure interaction (SSI). The performance of PML is significantly affected by PML parameters selection. However, the way to select PML parameters still remains unclear. This study proposes a method for PML parameters determination for elastic wave propagation in two-dimensional (2D) media. The scaling and attenuation functions are developed in order to increase the accuracy and effectiveness of the PML. The proposed scheme is applied for a mixed PML in time domain. The finite element method (FEM) formulations of the PML are presented so that it can be easily applied to the existing codes. ABAQUS, a popular FEM code, is used for numerical applications in this study. The proposed PML is imported into ABAQUS by using a user-defined element (UEL) written in Fortran language. Six numerical analyses of SSI are implemented to prove the efficiency of the proposed PML. The numerical analyses cover many realistic problems, including free field, surface structure, and embedded structure problems. The results demonstrate the efficiency of the proposed PML in terms of the accuracy and computational cost.


Sign in / Sign up

Export Citation Format

Share Document