Coupling of Very Low Frequency Through-the-earth Radio Signals to Elongated Conductors

2017 ◽  
Vol 65 (6) ◽  
pp. 3146-3153 ◽  
Author(s):  
Maxim Ralchenko ◽  
Mike Roper ◽  
Markus Svilans ◽  
Claire Samson
2020 ◽  
Vol 38 (1) ◽  
pp. 207-230
Author(s):  
Yuriy Rapoport ◽  
Vladimir Grimalsky ◽  
Viktor Fedun ◽  
Oleksiy Agapitov ◽  
John Bonnell ◽  
...  

Abstract. The modeling of very low-frequency (VLF) electromagnetic (EM) beam propagation in the Earth–ionosphere waveguide (WGEI) is considered. A new tensor impedance method for modeling the propagation of electromagnetic beams in a multi-layered and inhomogeneous waveguide is presented. The waveguide is assumed to possess the gyrotropy and inhomogeneity with a thick cover layer placed above the waveguide. The influence of geomagnetic field inclination and carrier beam frequency on the characteristics of the polarization transformation in the Earth–ionosphere waveguide is determined. The new method for modeling the propagation of electromagnetic beams allows us to study the (i) propagation of the very low-frequency modes in the Earth–ionosphere waveguide and, in perspective, their excitation by the typical Earth–ionosphere waveguide sources, such as radio wave transmitters and lightning discharges, and (ii) leakage of Earth–ionosphere waveguide waves into the upper ionosphere and magnetosphere. The proposed approach can be applied to the variety of problems related to the analysis of the propagation of electromagnetic waves in layered gyrotropic and anisotropic active media in a wide frequency range, e.g., from the Earth–ionosphere waveguide to the optical waveband, for artificial signal propagation such as metamaterial microwave or optical waveguides.


2020 ◽  
Vol 38 (2) ◽  
pp. 385-394
Author(s):  
Emilia Correia ◽  
Luis Tiago Medeiros Raunheitte ◽  
José Valentin Bageston ◽  
Dino Enrico D'Amico

Abstract. The goal of this work is to investigate the gravity wave (GW) characteristics in the low ionosphere using very low frequency (VLF) radio signals. The spatial modulations produced by the GWs affect the conditions of the electron density at reflection height of the VLF signals, which produce fluctuations of the electrical conductivity in the D region that can be detected as variations in the amplitude and phase of VLF narrowband signals. The analysis considered the VLF signal transmitted from the US Cutler, Maine (NAA) station that was received at Comandante Ferraz Brazilian Antarctic Station (EACF, 62.1∘ S, 58.4∘ W), with its great circle path crossing the Drake Passage longitudinally. The wave periods of the GWs detected in the low ionosphere are obtained using the wavelet analysis applied to the VLF amplitude. Here the VLF technique was used as a new aspect for monitoring GW activity. It was validated comparing the wave period and duration properties of one GW event observed simultaneously with a co-located airglow all-sky imager both operating at EACF. The statistical analysis of the seasonal variation of the wave periods detected using VLF technique for 2007 showed that the GW events occurred all observed days, with the waves with a period between 5 and 10 min dominating during night hours from May to September, while during daytime hours the waves with a period between 0 and 5 min are predominant the whole year and dominate all days from November to April. These results show that VLF technique is a powerful tool to obtain the wave period and duration of GW events in the low ionosphere, with the advantage of being independent of sky conditions, and it can be used during the whole day and year-round.


2021 ◽  
Vol 10 (1) ◽  
pp. 81-90
Author(s):  
Jakob Juul Larsen ◽  
Stine Søgaard Pedersen ◽  
Nikolaj Foged ◽  
Esben Auken

Abstract. The transient electromagnetic method (TEM) is widely used for mapping subsurface resistivity structures, but data are inevitably contaminated by noise from various sources. It is common practice to gate signals from TEM systems to reduce the amount of data and improve the signal-to-noise ratio (SNR). Gating acts as a filter, and optimum gating will pass the TEM signal un-attenuated while suppressing noise. In systems based on analog boxcar integrators, the gating corresponds to filtering with a square window. The frequency response of this window shape has large side lobes, which are often insufficient in attenuating noise, e.g., from radio signals in the very low frequency (VLF) 3–30 kHz band. Tapered gates have better side lobe suppression and attenuate noise better, but tapering with analog boxcar integrators is difficult. We propose using many short boxcar gates, denoted sub-gates, and combine the sub-gates into semi-tapered gates to improve noise rejection at late gates where low signal normally leads to poor SNR. The semi-tapering approach is analyzed and tested experimentally on data from a roving TEM system. We quantify the effect of semi-tapered gates by computing an improvement factor as the ratio between the standard error of data measured with boxcar gates and the standard error of data measured with semi-tapered gates. Data from a test survey in Gedved, Denmark, with 1825 measurements gave mean improvement factors between 1.04 and 2.22 for the 10 late-time gates centered between 78.7 and 978.1 µs. After inversion of the data, we find that semi-tapering increases the depth of investigation by about 20 % for this specific survey. We conclude that the semi-tapered approach is a viable path towards increasing SNR in TEM systems based on analog boxcar integrators.


2010 ◽  
Vol 2 (2) ◽  
pp. 233-250 ◽  
Author(s):  
M. K. Kachakhidze ◽  
Z. A. Kereselidze ◽  
N. K. Kachakhidze

Abstract. Very low frequency (VLF) electromagnetic radiation (in diapason 1 kHz – 1 MHz) in atmosphere, generated during earthquake preparation period, may be connected with linear size, characterizing incoming earthquake source. In order to argue this hypothesis very simple quasi-electrostatic model is used: local VLF radiation may be the manifestation of own electromagnetic oscillations of concrete seismoactive segments of lithosphere-atmosphere system. This model explains qualitatively well-known precursor effects of earthquakes. At the same time, it will be principally possible to forecast expected earthquake with certain precision if we use this model after diagnosing existed data. As physical basis of working hypothesis is atmospheric effect of polarization charges occurred in surface layer of the Earth, it is possible to test the below constructed model in medium, where reasons of polarization charge generation may be different from piezoelectric mechanism, for example, due to electrolytic hydration.


2019 ◽  
pp. 199-213
Author(s):  
S. L. Shalimov ◽  
A. A. Rozhnoi ◽  
M. S. Solov`eva ◽  
E. V. Ol`shanskaya

Fairly complex processes of lithosphere–ionosphere interactions can be explored by diagnosing the outer envelopes of the Earth with the use of global satellite navigational systems and equally global network of ground receivers and very-low-frequency transmitters. The earthquake and tsunami impacts on the ionosphere are the example of these processes. The current advances in the studies of these processes are briefly outlined.


Sign in / Sign up

Export Citation Format

Share Document