Fourier Subspace-Based Deep Learning Method for Inverse Design of Frequency Selective Surface

Author(s):  
Enze Zhu ◽  
Zhun Wei ◽  
Xing Xing Xu ◽  
Wen-Yan Yin
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 211849-211859
Author(s):  
Junjie Hou ◽  
Hai Lin ◽  
Weilin Xu ◽  
Yuze Tian ◽  
You Wang ◽  
...  

Author(s):  
Alfredo Gomes Neto ◽  
Jefferson Costa e Silva ◽  
Alexandre Jean Rene Serres ◽  
Marina de Oliveira Alencar ◽  
Ianes Barbosa Grecia Coutinho ◽  
...  

2019 ◽  
Vol 9 (22) ◽  
pp. 4749
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Linyuan Wang ◽  
Chi Zhang ◽  
Jian Chen ◽  
...  

Decoding human brain activities, especially reconstructing human visual stimuli via functional magnetic resonance imaging (fMRI), has gained increasing attention in recent years. However, the high dimensionality and small quantity of fMRI data impose restrictions on satisfactory reconstruction, especially for the reconstruction method with deep learning requiring huge amounts of labelled samples. When compared with the deep learning method, humans can recognize a new image because our human visual system is naturally capable of extracting features from any object and comparing them. Inspired by this visual mechanism, we introduced the mechanism of comparison into deep learning method to realize better visual reconstruction by making full use of each sample and the relationship of the sample pair by learning to compare. In this way, we proposed a Siamese reconstruction network (SRN) method. By using the SRN, we improved upon the satisfying results on two fMRI recording datasets, providing 72.5% accuracy on the digit dataset and 44.6% accuracy on the character dataset. Essentially, this manner can increase the training data about from n samples to 2n sample pairs, which takes full advantage of the limited quantity of training samples. The SRN learns to converge sample pairs of the same class or disperse sample pairs of different class in feature space.


Sign in / Sign up

Export Citation Format

Share Document