scholarly journals Copper Waveguide Cavities With Reduced Surface Loss for Coupling to Superconducting Qubits

2014 ◽  
Vol 24 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Daniela F. Bogorin ◽  
Doug T. McClure ◽  
Matthew Ware ◽  
B. L. T. Plourde
2013 ◽  
Vol E96.C (3) ◽  
pp. 362-364
Author(s):  
Takeshi FUKUDA ◽  
Kenji TAKAGI ◽  
Norihiko KAMATA ◽  
Jungmyoung JU ◽  
Yutaka YAMAGATA

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Su ◽  
Zhaojian Xu ◽  
Jiang Wu ◽  
Deying Luo ◽  
Qin Hu ◽  
...  

AbstractThe performance of perovskite photovoltaics is fundamentally impeded by the presence of undesirable defects that contribute to non-radiative losses within the devices. Although mitigating these losses has been extensively reported by numerous passivation strategies, a detailed understanding of loss origins within the devices remains elusive. Here, we demonstrate that the defect capturing probability estimated by the capture cross-section is decreased by varying the dielectric response, producing the dielectric screening effect in the perovskite. The resulting perovskites also show reduced surface recombination and a weaker electron-phonon coupling. All of these boost the power conversion efficiency to 22.3% for an inverted perovskite photovoltaic device with a high open-circuit voltage of 1.25 V and a low voltage deficit of 0.37 V (a bandgap ~1.62 eV). Our results provide not only an in-depth understanding of the carrier capture processes in perovskites, but also a promising pathway for realizing highly efficient devices via dielectric regulation.


2021 ◽  
Vol 118 (23) ◽  
pp. 232602
Author(s):  
C. R. Conner ◽  
A. Bienfait ◽  
H.-S. Chang ◽  
M.-H. Chou ◽  
É. Dumur ◽  
...  

Nature ◽  
2021 ◽  
Vol 595 (7867) ◽  
pp. 383-387
Author(s):  
◽  
Zijun Chen ◽  
Kevin J. Satzinger ◽  
Juan Atalaya ◽  
Alexander N. Korotkov ◽  
...  

AbstractRealizing the potential of quantum computing requires sufficiently low logical error rates1. Many applications call for error rates as low as 10−15 (refs. 2–9), but state-of-the-art quantum platforms typically have physical error rates near 10−3 (refs. 10–14). Quantum error correction15–17 promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device18,19 and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
K. S. Christensen ◽  
S. E. Rasmussen ◽  
D. Petrosyan ◽  
N. T. Zinner

Sign in / Sign up

Export Citation Format

Share Document