Investigation of a Modified Flux-Coupling-Type SFCL for Low-Voltage Ride-Through Fulfillment of a Virtual Synchronous Generator

2020 ◽  
Vol 30 (4) ◽  
pp. 1-6 ◽  
Author(s):  
Lei Chen ◽  
Guocheng Li ◽  
Hongkun Chen ◽  
Meng Ding ◽  
Xuyang Zhang ◽  
...  
IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 2703-2711 ◽  
Author(s):  
Kai Shi ◽  
Wentao Song ◽  
Peifeng Xu ◽  
Rongke Liu ◽  
Zhiming Fang ◽  
...  

Author(s):  
Sayyed Ali Akbar Shahriari ◽  
Mohammad Mohammadi ◽  
Mahdi Raoofat

Purpose The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous generator (PMSG) wind turbine. Design/methodology/approach Based on the updated grid codes, during and after faults, it is necessary to ensure wind energy generation in the network. PMSG is a type of wind energy technology that is growing rapidly in the network. The control scheme based on extended Kalman filter (EKF) is proposed to improve the low voltage ride-through (LVRT) capability of the PMSG. In the control scheme, because the state estimation algorithm is applied, the requirement of DC link voltage measurement device and generator speed sensor is removed. Furthermore, by applying this technique, the extent of possible noise on measurement tools is reduced. Findings In the proposed control scheme, zero or low-voltage ride-through capability of PMSG is enhanced. Furthermore, the requirement of DC link voltage measurement device and generator speed sensor is removed and the amount of possible noise on the measurement tools is minimized. To evaluate the ability of the proposed method, four different cases, including short and long duration short circuit fault close to PMSG in the presence and absence of measurement noise are studied. The results confirm the superiority of the proposed method. Originality/value This study introduces EKF to enhance LVRT capability of a PMSG wind turbine.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1807
Author(s):  
Mohammed H. Qais ◽  
Hany M. Hasanien ◽  
Saad Alghuwainem

This paper depicts a new attempt to apply a novel transient search optimization (TSO) algorithm to optimally design the proportional-integral (PI) controllers. Optimal PI controllers are utilized in all converters of a grid-linked permanent magnet synchronous generator (PMSG) powered by a variable-speed wind turbine. The converters of such wind energy systems contain a generator-side converter (GSC) and a grid-side inverter (GSI). Both of these converters are optimally controlled by the proposed TSO-based PI controllers using a vector control scheme. The GSC is responsible for regulating the maximum power point, the reactive generator power, and the generator currents. In addition, the GSI is essentially controlled to control the point of common coupling (PCC) voltage, DC link voltage, and the grid currents. The TSO is applied to minimize the fitness function, which has the sum of these variables’ squared error. The optimization problem’s constraints include the range of the proportional and integral gains of the PI controllers. All the simulation studies, including the TSO code, are implemented using PSCAD software. This represents a salient and new contribution of this study, where the TSO is coded using Fortran language within PSCAD software. The TSO-PI control scheme’s effectiveness is compared with that achieved by using a recent grey wolf optimization (GWO) algorithm–PI control scheme. The validity of the proposed TSO–PI controllers is tested under several network disturbances, such as subjecting the system to balanced and unbalanced faults. With the optimal TSO–PI controller, the low voltage ride-through ability of the grid-linked PMSG can be further improved.


Sign in / Sign up

Export Citation Format

Share Document