Enhancement of low-voltage ride-through capability of permanent magnet synchronous generator wind turbine by applying state-estimation technique

Author(s):  
Sayyed Ali Akbar Shahriari ◽  
Mohammad Mohammadi ◽  
Mahdi Raoofat

Purpose The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous generator (PMSG) wind turbine. Design/methodology/approach Based on the updated grid codes, during and after faults, it is necessary to ensure wind energy generation in the network. PMSG is a type of wind energy technology that is growing rapidly in the network. The control scheme based on extended Kalman filter (EKF) is proposed to improve the low voltage ride-through (LVRT) capability of the PMSG. In the control scheme, because the state estimation algorithm is applied, the requirement of DC link voltage measurement device and generator speed sensor is removed. Furthermore, by applying this technique, the extent of possible noise on measurement tools is reduced. Findings In the proposed control scheme, zero or low-voltage ride-through capability of PMSG is enhanced. Furthermore, the requirement of DC link voltage measurement device and generator speed sensor is removed and the amount of possible noise on the measurement tools is minimized. To evaluate the ability of the proposed method, four different cases, including short and long duration short circuit fault close to PMSG in the presence and absence of measurement noise are studied. The results confirm the superiority of the proposed method. Originality/value This study introduces EKF to enhance LVRT capability of a PMSG wind turbine.

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1807
Author(s):  
Mohammed H. Qais ◽  
Hany M. Hasanien ◽  
Saad Alghuwainem

This paper depicts a new attempt to apply a novel transient search optimization (TSO) algorithm to optimally design the proportional-integral (PI) controllers. Optimal PI controllers are utilized in all converters of a grid-linked permanent magnet synchronous generator (PMSG) powered by a variable-speed wind turbine. The converters of such wind energy systems contain a generator-side converter (GSC) and a grid-side inverter (GSI). Both of these converters are optimally controlled by the proposed TSO-based PI controllers using a vector control scheme. The GSC is responsible for regulating the maximum power point, the reactive generator power, and the generator currents. In addition, the GSI is essentially controlled to control the point of common coupling (PCC) voltage, DC link voltage, and the grid currents. The TSO is applied to minimize the fitness function, which has the sum of these variables’ squared error. The optimization problem’s constraints include the range of the proportional and integral gains of the PI controllers. All the simulation studies, including the TSO code, are implemented using PSCAD software. This represents a salient and new contribution of this study, where the TSO is coded using Fortran language within PSCAD software. The TSO-PI control scheme’s effectiveness is compared with that achieved by using a recent grey wolf optimization (GWO) algorithm–PI control scheme. The validity of the proposed TSO–PI controllers is tested under several network disturbances, such as subjecting the system to balanced and unbalanced faults. With the optimal TSO–PI controller, the low voltage ride-through ability of the grid-linked PMSG can be further improved.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Chao-Tsung Ma ◽  
Zong-Hann Shi

As the penetration of renewable energy power generation, such as wind power generation, increases low-voltage ride-through (LVRT), control is necessary during grid faults to support wind turbine generators (WTGs) in compensating reactive current to restore nominal grid voltages, and maintain a desired system stability. In contrast to the commonly used centralized LVRT controller, this study proposes a distributed control scheme using a LVRT compensator (LVRTC) capable of simultaneously performing reactive current compensation for doubly-fed induction generator (DFIG)-, or permanent magnet synchronous generator (PMSG)-based WTGs. The proposed LVRTC using silicon carbide (SiC)-based inverters can achieve better system efficiency, and increase system reliability. The proposed LVRTC adopts a digital control scheme and dq-axis current decoupling algorithm to realize simultaneous active/reactive power control features. Theoretical analysis, derivation of mathematical models, and design of the control scheme are initially conducted, and simulation is then performed in a computer software environment to validate the feasibility of the system. Finally, a 2 kVA small-scale hardware system with TI’s digital signal processor (DSP) as the control core is implemented for experimental verification. Results from simulation and implementation are in close agreement, and validate the feasibility and effectiveness of the proposed control scheme.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5442
Author(s):  
Liang Yuan ◽  
Ke Meng ◽  
Jingjie Huang ◽  
Zhao Yang Dong ◽  
Wang Zhang ◽  
...  

Various challenges are acknowledged in practical cases with high wind power penetration. Fault ride-through (FRT) capability has become the most dominant grid integration requirements for the wind energy conversion system worldwide. The high voltage ride-through (HVRT) and low voltage ride-through (LVRT) performance play a vital role in the grid-friendly integration into the system. In this paper, a coordinated HVRT and LVRT control strategy is proposed to enhance the FRT capability of the permanent magnet synchronous generator (PMSG)-based wind turbine generators (WTG). A dual-mode chopper protection is developed to avoid DC-link overvoltage, and a deadband protection is proposed to prevent oscillations under edge voltage conditions. The proposed strategy can ride through different levels of voltage sags or swells and provide auxiliary dynamic reactive power support simultaneously. The performance of the proposed control scheme is validated through various comparison case tests in PSCAD/EMTDC.


2020 ◽  
Vol 54 (4) ◽  
pp. 503-527
Author(s):  
Charanjeet Madan ◽  
Naresh Kumar

PurposeBy means of the massive environmental and financial reimbursements, wind turbine (WT) has turned out to be a satisfactory substitute for the production of electricity by nuclear or fossil power plants. Numerous research studies are nowadays concerning the scheme to develop the performance of the WT into a doubly fed induction generator-low voltage ride-through (DFIG-LVRT) system, with utmost gain and flexibility. To overcome the nonlinear characteristics of WT, a photovoltaic (PV) array is included along with the WT to enhance the system’s performance.Design/methodology/approachThis paper intends to simulate the control system (CS) for the DFIG-LVRT system with PV array operated by the MPPT algorithm and the WT that plays a major role in the simulation of controllers to rectify the error signals. This paper implements a novel method called self-adaptive whale with fuzzified error (SWFE) design to simulate the optimized CS. In addition, it distinguishes the SWFE-based LVRT system with standard LVRT system and the system with minimum and maximum constant gain.FindingsThrough the performance analysis, the value of gain with respect to the number of iterations, it was noted that at 20th iteration, the implemented method was 45.23% better than genetic algorithm (GA), 50% better than particle swarm optimization (PSO), 2.3% better than ant bee colony (ABC) and 28.5% better than gray wolf optimization (GWO) techniques. The investigational analysis has authenticated that the implemented SWFE-dependent CS was effectual for DFIG-LVRT, when distinguished with the aforementioned techniques.Originality/valueThis paper presents a technique for simulating the CS for DFIG-LVRT system using the SWFE algorithm. This is the first work that utilizes SWFE-based optimization for simulating the CS for the DFIG-LVRT system with PV array and WT.


2021 ◽  
Vol 11 (3) ◽  
pp. 7146-7151
Author(s):  
S. A. Dayo ◽  
S. H. Memon ◽  
M. A. Uqaili ◽  
Z. A. Memon

This paper presents an efficient Low Voltage Ride Through (LVRT) control scheme for a 10.0MW grid-tied Permanent Magnet Synchronous Generator (PMSG)-based wind farm. The proposed control strategy plans to enhance the power quality and amount of injected power to satisfy the grid code requirements. The proposed approach utilizes a static Shunt Var Compensator (SVC) to enhance the LVRT capability and to improve power quality. It has been observed from the outcomes of the study that the proposed SVC controller ensures safe and reliable operation of the considered PMSG-based power system. The proposed system not only improves power quality but also it provides voltage stability of the Wind Energy Conversion System (WECS) under abnormal/fault conditions. The results show the superiority of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document