Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays

2018 ◽  
Vol 12 (4) ◽  
pp. 839-850 ◽  
Author(s):  
Giovanni Pietro Seu ◽  
Gian Nicola Angotzi ◽  
Fabio Boi ◽  
Luigi Raffo ◽  
Luca Berdondini ◽  
...  
Author(s):  
David J. Kinahan ◽  
Sarai M. Delgado ◽  
Lourdes A.N. Julius ◽  
Adam Mallette ◽  
David Saenz-Ardila ◽  
...  

Author(s):  
Christine Beauchene ◽  
Alexander Leonessa ◽  
Subhradeep Roy ◽  
James Simon ◽  
Nicole Abaid

The brain is a highly complex network and analyzing brain connectivity is a nontrivial task. Consequently, the neuroscience community created a large-scale, customizable, mathematical model which simulates brain activity called The Virtual Brain (TVB). Using TVB, we seek to control electroencephalography (EEG) measured brain states using auditory inputs, through TVB. A safe non-invasive brain stimulation method is binaural beats (BB) which arise from the brain’s interpretation of two pure tones, with a small frequency mismatch, delivered independently to each ear. A third phantom BB, whose frequency is equal to the difference of the two presented tones, is produced. This paper details the development and proof-of-concept testing of a simulation environment for an EEG-based closed-loop control of TVB using BB. Results suggest that the connectivity networks, constructed from simulated EEG, may change with certain BB stimulation frequency. In this work, we demonstrate that a linear controller can successfully modulate TVB connectivity.


2016 ◽  
Vol 68 (2) ◽  
Author(s):  
Denis Sipp ◽  
Peter J. Schmid

This review article is concerned with the design of linear reduced-order models and control laws for closed-loop control of instabilities in transitional flows. For oscillator flows, such as open-cavity flows, we suggest the use of optimal control techniques with Galerkin models based on unstable global modes and balanced modes. Particular attention has to be paid to stability–robustness properties of the control law. Specifically, we show that large delays and strong amplification between the control input and the estimation sensor may be detrimental both to performance and robustness. For amplifier flows, such as backward-facing step flow, the requirement to account for the upstream disturbance environment rules out Galerkin models. In this case, an upstream sensor is introduced to detect incoming perturbations, and identification methods are used to fit a model structure to available input–output data. Control laws, obtained by direct inversion of the input–output relations, are found to be robust when applied to the large-scale numerical simulation. All the concepts are presented in a step-by-step manner, and numerical codes are provided for the interested reader.


Sign in / Sign up

Export Citation Format

Share Document