Wireless closed-loop control of centrifugo-pneumatic valving towards large-scale microfluidic process integration

Author(s):  
David J. Kinahan ◽  
Sarai M. Delgado ◽  
Lourdes A.N. Julius ◽  
Adam Mallette ◽  
David Saenz-Ardila ◽  
...  
Author(s):  
Christine Beauchene ◽  
Alexander Leonessa ◽  
Subhradeep Roy ◽  
James Simon ◽  
Nicole Abaid

The brain is a highly complex network and analyzing brain connectivity is a nontrivial task. Consequently, the neuroscience community created a large-scale, customizable, mathematical model which simulates brain activity called The Virtual Brain (TVB). Using TVB, we seek to control electroencephalography (EEG) measured brain states using auditory inputs, through TVB. A safe non-invasive brain stimulation method is binaural beats (BB) which arise from the brain’s interpretation of two pure tones, with a small frequency mismatch, delivered independently to each ear. A third phantom BB, whose frequency is equal to the difference of the two presented tones, is produced. This paper details the development and proof-of-concept testing of a simulation environment for an EEG-based closed-loop control of TVB using BB. Results suggest that the connectivity networks, constructed from simulated EEG, may change with certain BB stimulation frequency. In this work, we demonstrate that a linear controller can successfully modulate TVB connectivity.


2018 ◽  
Vol 12 (4) ◽  
pp. 839-850 ◽  
Author(s):  
Giovanni Pietro Seu ◽  
Gian Nicola Angotzi ◽  
Fabio Boi ◽  
Luigi Raffo ◽  
Luca Berdondini ◽  
...  

2016 ◽  
Vol 68 (2) ◽  
Author(s):  
Denis Sipp ◽  
Peter J. Schmid

This review article is concerned with the design of linear reduced-order models and control laws for closed-loop control of instabilities in transitional flows. For oscillator flows, such as open-cavity flows, we suggest the use of optimal control techniques with Galerkin models based on unstable global modes and balanced modes. Particular attention has to be paid to stability–robustness properties of the control law. Specifically, we show that large delays and strong amplification between the control input and the estimation sensor may be detrimental both to performance and robustness. For amplifier flows, such as backward-facing step flow, the requirement to account for the upstream disturbance environment rules out Galerkin models. In this case, an upstream sensor is introduced to detect incoming perturbations, and identification methods are used to fit a model structure to available input–output data. Control laws, obtained by direct inversion of the input–output relations, are found to be robust when applied to the large-scale numerical simulation. All the concepts are presented in a step-by-step manner, and numerical codes are provided for the interested reader.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 118-LB
Author(s):  
CAROL J. LEVY ◽  
GRENYE OMALLEY ◽  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
YOGISH C. KUDVA ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
BRUCE A. BUCKINGHAM ◽  
YOGISH C. KUDVA ◽  
LORI M. LAFFEL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document