Electrocutaneous Stimulation for Sensory Communication in Rehabilitation Engineering

1982 ◽  
Vol BME-29 (4) ◽  
pp. 300-308 ◽  
Author(s):  
Andrew Y. J. Szeto ◽  
Frank A. Saunders
Author(s):  
Andrew Y. J. Szeto ◽  
John Lyman ◽  
Ronald E. Prior

Psychometric functions of pulse rate (PR) and pulse width (PW) from electrocutaneous stimuli were determined using the method of comparative judgments. The study revealed that changes in PR were more easily detected than changes in PW, as measured by the percent of just noticeable difference (jnd). The PR jnd data from test subjects indicated that maximum frequency discrimination occurred near 20 pulses per second. Using the PR and PW psychometric curves, compensatory transfer functions can be determined which will improve the efficacy of sensory communication systems based on electrocutaneous stimulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


Sign in / Sign up

Export Citation Format

Share Document