Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors

2019 ◽  
Vol 66 (12) ◽  
pp. 3534-3542 ◽  
Author(s):  
Ming Hao ◽  
Ken Chen ◽  
Chenglong Fu
2020 ◽  
Vol 75 ◽  
pp. 22-27
Author(s):  
Nikiforos Okkalidis ◽  
George Marinakis ◽  
Alfred Gatt ◽  
Marvin K Bugeja ◽  
Kenneth P Camilleri ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Eunsung Lee ◽  
Eunjung Chae ◽  
Hejin Cheong ◽  
Joonki Paik

This paper presents an image deblurring algorithm to remove motion blur using analysis of motion trajectories and local statistics based on inertial sensors. The proposed method estimates a point-spread-function (PSF) of motion blur by accumulating reweighted projections of the trajectory. A motion blurred image is then adaptively restored using the estimated PSF and spatially varying activity map to reduce both restoration artifacts and noise amplification. Experimental results demonstrate that the proposed method outperforms existing PSF estimation-based motion deconvolution methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed in various imaging devices because of its efficient implementation without an iterative computational structure.


Sensors ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 1940 ◽  
Author(s):  
Julius Hannink ◽  
Malte Ollenschläger ◽  
Felix Kluge ◽  
Nils Roth ◽  
Jochen Klucken ◽  
...  

2020 ◽  
Vol 65 (6) ◽  
pp. 653-671 ◽  
Author(s):  
Nikiforos Okkalidis ◽  
Kenneth P. Camilleri ◽  
Alfred Gatt ◽  
Marvin K. Bugeja ◽  
Owen Falzon

AbstractThe use of foot mounted inertial and other auxiliary sensors for kinematic gait analysis has been extensively investigated during the last years. Although, these sensors still yield less accurate results than those obtained employing optical motion capture systems, the miniaturization and their low cost have allowed the estimation of kinematic spatiotemporal parameters in laboratory conditions and real life scenarios. The aim of this work was to present a comprehensive approach of this scientific area through a systematic literature research, breaking down the state-of-the-art methods into three main parts: (1) zero velocity interval detection techniques; (2) assumptions and sensors’ utilization; (3) foot pose and trajectory estimation methods. Published articles from 1995 until December of 2018 were searched in the PubMed, IEEE Xplore and Google Scholar databases. The research was focused on two categories: (a) zero velocity interval detection methods; and (b) foot pose and trajectory estimation methods. The employed assumptions and the potential use of the sensors have been identified from the retrieved articles. Technical characteristics, categorized methodologies, application conditions, advantages and disadvantages have been provided, while, for the first time, assumptions and sensors’ utilization have been identified, categorized and are presented in this review. Considerable progress has been achieved in gait parameters estimation on constrained laboratory environments taking into account assumptions such as a person walking on a flat floor. On the contrary, methods that rely on less constraining assumptions, and are thus applicable in daily life, led to less accurate results. Rule based methods have been mainly used for the detection of the zero velocity intervals, while more complex techniques have been proposed, which may lead to more accurate gait parameters. The review process has shown that presently the best-performing methods for gait parameter estimation make use of inertial sensors combined with auxiliary sensors such as ultrasonic sensors, proximity sensors and cameras. However, the experimental evaluation protocol was much more thorough, when single inertial sensors were used. Finally, it has been highlighted that the accuracy of setups using auxiliary sensors may further be improved by collecting measurements during the whole foot movement and not only partially as is currently the practice. This review has identified the need for research and development of methods and setups that allow for the robust estimation of kinematic gait parameters in unconstrained environments and under various gait profiles.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4194 ◽  
Author(s):  
Markus Zrenner ◽  
Stefan Gradl ◽  
Ulf Jensen ◽  
Martin Ullrich ◽  
Bjoern Eskofier

Running has a positive impact on human health and is an accessible sport for most people. There is high demand for tracking running performance and progress for amateurs and professionals alike. The parameters velocity and distance are thereby of main interest. In this work, we evaluate the accuracy of four algorithms, which calculate the stride velocity and stride length during running using data of an inertial measurement unit (IMU) placed in the midsole of a running shoe. The four algorithms are based on stride time, foot acceleration, foot trajectory estimation, and deep learning, respectively. They are compared using two studies: a laboratory-based study comprising 2377 strides from 27 subjects with 3D motion tracking as a reference and a field study comprising 12 subjects performing a 3.2-km run in a real-world setup. The results show that the foot trajectory estimation algorithm performs best, achieving a mean error of 0.032 ± 0.274 m/s for the velocity estimation and 0.022 ± 0.157 m for the stride length. An interesting alternative for systems with a low energy budget is the acceleration-based approach. Our results support the implementation decision for running velocity and distance tracking using IMUs embedded in the sole of a running shoe.


2020 ◽  
Vol 2020 (17) ◽  
pp. 2-1-2-6
Author(s):  
Shih-Wei Sun ◽  
Ting-Chen Mou ◽  
Pao-Chi Chang

To improve the workout efficiency and to provide the body movement suggestions to users in a “smart gym” environment, we propose to use a depth camera for capturing a user’s body parts and mount multiple inertial sensors on the body parts of a user to generate deadlift behavior models generated by a recurrent neural network structure. The contribution of this paper is trifold: 1) The multimodal sensing signals obtained from multiple devices are fused for generating the deadlift behavior classifiers, 2) the recurrent neural network structure can analyze the information from the synchronized skeletal and inertial sensing data, and 3) a Vaplab dataset is generated for evaluating the deadlift behaviors recognizing capability in the proposed method.


2021 ◽  
Author(s):  
Adam Augustyniak ◽  
David J. Hanley ◽  
Timothy W. Bretl ◽  
Neil J. Hejmanowski ◽  
David L. Carroll

Sign in / Sign up

Export Citation Format

Share Document