Reaction Force Mapping by 3-Axis Tactile Sensing With Arbitrary Angles for Tissue Hard-Inclusion Localization

2021 ◽  
Vol 68 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Tianliang Li ◽  
Anqi Pan ◽  
Hongliang Ren

2021 ◽  
Author(s):  
Satoshi Konishi ◽  
Fuminari Mori ◽  
Yugo Kakehi ◽  
Ayano Shimizu ◽  
Fumiya Sano ◽  
...  

Abstract Human-robot interaction technology has contributed to improving sociality for humanoid robots. At scales far from human scales, a microrobot can interact with an environment in a small world. Microsensors have been applied to measurement of forces by flying or walking insects. Meanwhile, most previous works focused on the measurement of the behavior of insects. Here, we propose microrobot-insect interactions by soft microfingers integrated with artificial muscle actuators and tactile sensors, which has been developed for a haptic teleoperation robot system. A soft pneumatic balloon actuator acts as the artificial muscle, and a flexible strain sensor using a liquid metal provides tactile sensing. Force interaction between a pill bug and the microfinger could be accomplished. The microfiger (12 mm × 3 mm × 490 µm) can move and touch an insect, and it can detect reaction force from an insect. The measured reaction force from the legs of a pill bug as a representative insect was less than 10 mN. Our results demonstrate the potential of microfinger-insect interactions in a small world. We anticipate that our results will lead to novel human-environment interaction.



Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5359
Author(s):  
Yingtian Xu ◽  
Ziya Wang ◽  
Wanjun Hao ◽  
Wenyu Zhao ◽  
Waner Lin ◽  
...  

Recent achievements in the field of computer vision, reinforcement learning, and locomotion control have largely extended legged robots’ maneuverability in complex natural environments. However, little research focuses on sensing and analyzing the physical properties of the ground, which is crucial to robots’ locomotion during their interaction with highly irregular profiles, deformable terrains, and slippery surfaces. A biomimetic, flexible, multimodal sole sensor (FMSS) designed for legged robots to identify the ontological status and ground information, such as reaction force mapping, contact situation, terrain, and texture information, to achieve agile maneuvers was innovatively presented in this paper. The FMSS is flexible and large-loaded (20 Pa–800 kPa), designed by integrating a triboelectric sensing coat, embedded piezoelectric sensor, and piezoresistive sensor array. To evaluate the effectiveness and adaptability in different environments, the multimodal sensor was mounted on one of the quadruped robot’s feet and one of the human feet then traversed through different environments in real-world tests. The experiment’s results demonstrated that the FMSS could recognize terrain, texture, hardness, and contact conditions during locomotion effectively and retrain its sensitivity (0.66 kPa−1), robustness, and compliance. The presented work indicates the FMSS’s potential to extend the feasibility and dexterity of tactile perception for state estimation and complex scenario detection.



1993 ◽  
Vol 3 (11) ◽  
pp. 2151-2159 ◽  
Author(s):  
Claudia Eberlein


2018 ◽  
Vol 138 (5) ◽  
pp. 591-592
Author(s):  
Akane Chujo ◽  
Shiro Urushihara ◽  
Kiyoshi Ohishi ◽  
Yuki Yokokura


2019 ◽  
Vol 139 (11) ◽  
pp. 375-380
Author(s):  
Harutoshi Takahashi ◽  
Yuta Namba ◽  
Takashi Abe ◽  
Masayuki Sohgawa


2015 ◽  
Vol 8 (2) ◽  
pp. 2135-2147 ◽  
Author(s):  
C. Y. Lo

General relativity is incomplete since it does not include the gravitational radiation reaction force and the interaction of gravitation with charged particles. General relativity is confusing because Einstein's covariance principle is invalid in physics. Moreover, there is no bounded dynamic solution for the Einstein equation. Thus, Gullstrand is right and the 1993 Nobel Prize for Physics press release is incorrect. Moreover, awards to Christodoulou reflect the blind faith toward Einstein and accumulated errors in mathematics. Note that the Einstein equation with an electromagnetic wave source has no valid solution unless a photonic energy-stress tensor with an anti-gravitational coupling is added. Thus, the photonic energy includes gravitational energy. The existence of anti-gravity coupling implies that the energy conditions in space-time singularity theorems of Hawking and Penrose cannot be satisfied, and thus are irrelevant. Also, the positive mass theorem of Yau and Schoen is misleading, though considered as an achievement by the Fields Medal. E = mc2 is invalid for the electromagnetic energy alone. The discovery of the charge-mass interaction establishes the need for unification of electromagnetism and gravitation and would explain many puzzles. Experimental investigations for further results are important.



2020 ◽  
Author(s):  
Wallace Derricotte ◽  
Huiet Joseph

The mechanism of isomerization of hydroxyacetone to 2-hydroxypropanal is studied within the framework of reaction force analysis at the M06-2X/6-311++G(d,p) level of theory. Three unique pathways are considered: (i) a step-wise mechanism that proceeds through formation of the Z-isomer of their shared enediol intermediate, (ii) a step-wise mechanism that forms the E-isomer of the enediol, and (iii) a concerted pathway that bypasses the enediol intermediate. Energy calculations show that the concerted pathway has the lowest activation energy barrier at 45.7 kcal mol<sup>-1</sup>. The reaction force, chemical potential, and reaction electronic flux are calculated for each reaction to characterize electronic changes throughout the mechanism. The reaction force constant is calculated in order to investigate the synchronous/asynchronous nature of the concerted intramolecular proton transfers involved. Additional characterization of synchronicity is provided by calculating the bond fragility spectrum for each mechanism.





Sign in / Sign up

Export Citation Format

Share Document