Direct Sensitivity Analysis of Nonlinear Distortion in RF Circuits Using Multidimensional Moments

Author(s):  
Dani Tannir
Author(s):  
S. Kaizerman ◽  
B. Benhabib ◽  
R. G. Fenton ◽  
G. Zak

Abstract A new robot kinematic calibration procedure is presented. The parameters of the kinematic model are estimated through a relationship established between the deviations in the joint variables and the deviations in the model parameters. Thus, the new method can be classified as an inverse calibration procedure. Using suitable sensitivity analysis methods, the matrix of the partial derivatives of joint variables with respect to robot parameters is calculated without having explicit expressions of joint variables as a function of task space coordinates (closed inverse kinematic solution). This matrix provides the relationship between the changes in the joint variables and the changes in the parameter values required for the calibration. Two deterministic sensitivity analysis methods are applied, namely the Direct Sensitivity Approach and the Adjoint Sensitivity Method. The new calibration procedure was successfully tested by the simulated calibrations of a two degree of freedom revolute-joint planar manipulator.


2021 ◽  
Author(s):  
Adwait Verulkar ◽  
Corina Sandu ◽  
Daniel Dopico ◽  
Adrian Sandu

Abstract Sensitivity analysis is one of the most prominent gradient based optimization techniques for mechanical systems. Model sensitivities are the derivatives of the generalized coordinates defining the motion of the system in time with respect to the system design parameters. These sensitivities can be calculated using finite differences, but the accuracy and computational inefficiency of this method limits its use. Hence, the methodologies of direct and adjoint sensitivity analysis have gained prominence. Recent research has presented computationally efficient methodologies for both direct and adjoint sensitivity analysis of complex multibody dynamic systems. The contribution of this article is in the development of the mathematical framework for conducting the direct sensitivity analysis of multibody dynamic systems with joint friction using the index-1 formulation. For modeling friction in multibody systems, the Brown and McPhee friction model has been used. This model incorporates the effects of both static and dynamic friction on the model dynamics. A case study has been conducted on a spatial slider-crank mechanism to illustrate the application of this methodology to real-world systems. Using computer models, with and without joint friction, effect of friction on the dynamics and model sensitivities has been demonstrated. The sensitivities of slider velocity have been computed with respect to the design parameters of crank length, rod length, and the parameters defining the friction model. Due to the highly non-linear nature of friction, the model dynamics are more sensitive during the transition phases, where the friction coefficient changes from static to dynamic and vice versa.


2019 ◽  
Vol 209 ◽  
pp. 478-480 ◽  
Author(s):  
Vyaas Gururajan ◽  
Fokion N. Egolfopoulos

1997 ◽  
Vol 31 (10) ◽  
pp. 2859-2868 ◽  
Author(s):  
Yueh-Jiun Yang ◽  
James G. Wilkinson ◽  
Armistead G. Russell

Author(s):  
Yitao Zhu ◽  
Daniel Dopico ◽  
Corina Sandu ◽  
Adrian Sandu

Vehicle dynamics simulation based on multibody dynamics techniques has become a powerful tool for vehicle systems analysis and design. As this approach evolves, more and more details are required to increase the accuracy of the simulations, to improve their efficiency, or to provide more information that will allow various types of analyses. One very important direction is the optimization of multibody systems. Sensitivity analysis of the dynamics of multibody systems is essential for design optimization. Dynamic sensitivities, when needed, are often calculated by means of finite differences but, depending of the number of parameters involved, this procedure can be very demanding in terms of time and the accuracy obtained can be very poor in many cases if real perturbations are used. In this paper, several ways to perform the sensitivity analysis of multibody systems are explored including the direct sensitivity approaches and the adjoint sensitivity ones. Finally, the techniques proposed are applied to the dynamical optimization of a five bar mechanism and a vehicle suspension system.


Sign in / Sign up

Export Citation Format

Share Document