scholarly journals Semiglobally Asymptotically Stable Nonlinear Observer for Camera Aided Navigation

Author(s):  
Elias Bjorne ◽  
Edmund Forland Brekke ◽  
Torleiv Haland Bryne ◽  
Tor Arne Johansen
2019 ◽  
Vol 4 (2) ◽  
pp. 349 ◽  
Author(s):  
Oluwatayo Michael Ogunmiloro ◽  
Fatima Ohunene Abedo ◽  
Hammed Kareem

In this article, a Susceptible – Vaccinated – Infected – Recovered (SVIR) model is formulated and analysed using comprehensive mathematical techniques. The vaccination class is primarily considered as means of controlling the disease spread. The basic reproduction number (Ro) of the model is obtained, where it was shown that if Ro<1, at the model equilibrium solutions when infection is present and absent, the infection- free equilibrium is both locally and globally asymptotically stable. Also, if Ro>1, the endemic equilibrium solution is locally asymptotically stable. Furthermore, the analytical solution of the model was carried out using the Differential Transform Method (DTM) and Runge - Kutta fourth-order method. Numerical simulations were carried out to validate the theoretical results. 


Author(s):  
M. N. Srinivas ◽  
G. Basava Kumar ◽  
V. Madhusudanan

The present research article constitutes Holling type II and IV diseased prey predator ecosystem and classified into two categories namely susceptible and infected predators.We show that the system has a unique positive solution. The deterministic and stochastic nature of the dynamics of the system is investigated. We check the existence of all possible steady states with local stability. By using Routh-Hurwitz criterion we showed that the positive equilibrium point $E_{7}$ is locally asymptotically stable if $x^{*} > \sqrt{m_{1}}$ .Moreover condition of the global stability of positive equilibrium point $E_{7}$ are also entrenched with help of Lyupunov theorem. Some Numerical simulations are carried out to illustrate our analytical findings.


2003 ◽  
Vol 68 (1) ◽  
pp. 139-177 ◽  
Author(s):  
Vladimír Kvasnička ◽  
Jiří Pospíchal

A simplified model of Darwinian evolution at the molecular level is studied by applying the methods of artificial chemistry. A chemical reactor (chemostat) contains molecules that are represented by binary strings, the strings being capable of replication with a probability proportional to their fitness. Moreover, the process of replication is not fully precise, sporadic mutations may produce new offspring strings, which are slightly different from their parent templates. The dynamics of such an autoreplicating system is described by Eigen's differential equations. These equations have a unique asymptotically stable state, which corresponds to those strings that have the highest rate constants (fitness). Fitness of binary string is calculated as a graph-theory similarity between a folding (phenotype) of respective string and the so-called required folding. The presented method offers a detailed view of mechanisms of the molecular Darwinian evolution, in particular of the meaning and importance of neutral mutations.


Sign in / Sign up

Export Citation Format

Share Document