Silicon Substrate Engineered High-Voltage High-Temperature GaN-DHFETs

2013 ◽  
Vol 60 (7) ◽  
pp. 2217-2223 ◽  
Author(s):  
Puneet Srivastava ◽  
Jo Das ◽  
Robert P. Mertens ◽  
Gustaaf Borghs
Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Author(s):  
Tianle Zheng ◽  
Jianwei Xiong ◽  
Xiaotang Shi ◽  
Bingying Zhu ◽  
Ya-Jun Cheng ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (40) ◽  
pp. 24856-24863 ◽  
Author(s):  
Yue Lin ◽  
Yun Cheng ◽  
Jie Li ◽  
Jan D. Miller ◽  
Jin Liu ◽  
...  

Wheat flour modified solid polymer electrolytes were synthesized and used in high safety and long cycling lithium batteries.


2010 ◽  
Vol 7 (7-8) ◽  
pp. 1952-1954 ◽  
Author(s):  
Kazuki Nomoto ◽  
Kazuya Hasegawa ◽  
Tohru Nakamura

Author(s):  
M. A Huque ◽  
R. Vijayaraghavan ◽  
M. Zhang ◽  
B. J. Blalock ◽  
L M. Tolbert ◽  
...  

2011 ◽  
Vol 20 (03) ◽  
pp. 471-484 ◽  
Author(s):  
LIANG ZUO ◽  
ROBERT GREENWELL ◽  
SYED K. ISLAM ◽  
M. A. HUQUE ◽  
BENJAMIN J. BLALOCK ◽  
...  

In recent years, increasing demand for hybrid electric vehicles (HEVs) has generated the need for reliable and low-cost high-temperature electronics which can operate at the high temperatures under the hood of these vehicles. A high-voltage and high temperature gate-driver integrated circuit for SiC FET switches with short circuit protection has been designed and implemented in a 0.8-micron silicon-on-insulator (SOI) high-voltage process. The prototype chip has been successfully tested up to 200°C ambient temperature without any heat sink or cooling mechanism. This gate-driver chip can drive SiC power FETs of the DC-DC converters in a HEV, and future chip modifications will allow it to drive the SiC power FETs of the traction drive inverter. The converter modules along with the gate-driver chip will be placed very close to the engine where the temperature can reach up to 175ΰC. Successful operation of the chip at this temperature with or without minimal heat sink and without liquid cooling will help achieve greater power-to-volume as well as power-to-weight ratios for the power electronics module.


Sign in / Sign up

Export Citation Format

Share Document