scholarly journals A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging

2016 ◽  
Vol 63 (1) ◽  
pp. 189-196 ◽  
Author(s):  
Neale A. W. Dutton ◽  
Istvan Gyongy ◽  
Luca Parmesan ◽  
Salvatore Gnecchi ◽  
Neil Calder ◽  
...  
Author(s):  
Neale A.W. Dutton ◽  
Luca Parmesan ◽  
Andrew J. Holmes ◽  
Lindsay A. Grant ◽  
Robert K. Henderson

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4016 ◽  
Author(s):  
Chao Zhang ◽  
Scott Lindner ◽  
Ivan Antolovic ◽  
Martin Wolf ◽  
Edoardo Charbon

Per-pixel time-to-digital converter (TDC) architectures have been exploited by single-photon avalanche diode (SPAD) sensors to achieve high photon throughput, but at the expense of fill factor, pixel pitch and readout efficiency. In contrast, TDC sharing architecture usually features high fill factor at small pixel pitch and energy efficient event-driven readout. While the photon throughput is not necessarily lower than that of per-pixel TDC architectures, since the throughput is not only decided by the TDC number but also the readout bandwidth. In this paper, a SPAD sensor with 32 × 32 pixels fabricated with a 180 nm CMOS image sensor technology is presented, where dynamically reallocating TDCs were implemented to achieve the same photon throughput as that of per-pixel TDCs. Each 4 TDCs are shared by 32 pixels via a collision detection bus, which enables a fill factor of 28% with a pixel pitch of 28.5 μm. The TDCs were characterized, obtaining the peak-to-peak differential and integral non-linearity of −0.07/+0.08 LSB and −0.38/+0.75 LSB, respectively. The sensor was demonstrated in a scanning light-detection-and-ranging (LiDAR) system equipped with an ultra-low power laser, achieving depth imaging up to 10 m at 6 frames/s with a resolution of 64 × 64 with 50 lux background light.


Author(s):  
Mike Bruce ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
David Bethke ◽  
J.M. Chin

Abstract For time resolved hot carrier emission from the backside, an alternate approach is demonstrated termed single point PICA. The single point approach records time resolved emission from an individual transistor using time-correlated-single-photon counting and an avalanche photo-diode. The avalanche photo-diode has a much higher quantum efficiency than micro-channel plate photo-multiplier tube based imaging cameras typically used in earlier approaches. The basic system is described and demonstrated from the backside on a ring oscillator circuit.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


Sign in / Sign up

Export Citation Format

Share Document