Autonomous control system of Electrically Regenerable Diesel Particulate Filter for light duty vehicles

Author(s):  
J. Krivka ◽  
P. Kribsky ◽  
L. Valda ◽  
J. Zahour ◽  
K. Kosturik
2020 ◽  
Author(s):  
Evangelia Kostenidou ◽  
Alvaro Martinez-Valiente ◽  
Badr R'Mili ◽  
Baptiste Marques ◽  
Brice Temime-Roussel ◽  
...  

Abstract. Changes in engine technologies and after-treatment devices can profoundly alter the chemical composition of the emitted pollutants. To investigate these effects, we characterized the chemical composition of particles emitted from three diesel and four gasoline Euro 5 light duty vehicles on a chassis dynamometer facility. Black carbon (BC) was the dominant emitted species with emission factors (EFs) varying from 0.2 to 7.1 mg km−1 for gasoline cars and 0.003 to 0.08 mg km−1 for diesel cars. For gasoline cars, the organic matter (OM) EFs varied from 5 to 103 µg km−1 for direct injection (GDI) vehicles, and from 1 to 8 µg km−1 for port fuel injection (PFI) vehicles, while for the diesel cars it ranged between 0.15 and 65 µg km−1. Cold-start cycles and more specifically the first minutes of the cycle, contributed the largest fraction of the PM including BC, OM and Polycyclic Aromatic Hydrocarbons (PAHs). More than 40 PAHs, including methylated, nitro, oxygenated and amino PAHs were identified and quantified in both diesel and gasoline exhaust particles using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS). The PAHs emissions from the GDI technology were a factor of 4 higher compared to the vehicles equipped with a PFI system during the cold start cycle, while the nitro-PAHs fraction was much more appreciable in the GDI emissions. For two of the three diesel vehicles the PAHs emissions were close to the detection limit, but for one, which presented an after-treatment device failure, the average PAHs EF was 2.04 µg km−1. Emissions of nanoparticles (below 30 nm), mainly composed by ammonium bisulfate, were measured during the passive regeneration of the catalyzed diesel particulate filter (CDPF) vehicle. TEM images confirmed the presence of ubiquitous nanometric metal inclusions into soot particles emitted from the diesel vehicle equipped with a fuel borne catalyst – diesel particulate filter (FBC-DPF). XPS analysis of the particles emitted by the PFI car revealed both the presence of heavy elements (Ti, Zn, Ca, Si, P, Cl), and disordered soot surface with a significant concentration of carbon radical defects having possible consequences on both chemical reactivity and particle toxicity. Our findings show that different after-treatment technologies have an important effect on the level and the chemical composition of the emitted particles. In addition, this research highlights the importance of the particle filter devices condition and their regular checking.


2021 ◽  
Vol 21 (6) ◽  
pp. 4779-4796
Author(s):  
Evangelia Kostenidou ◽  
Alvaro Martinez-Valiente ◽  
Badr R'Mili ◽  
Baptiste Marques ◽  
Brice Temime-Roussel ◽  
...  

Abstract. Changes in engine technologies and after-treatment devices can profoundly alter the chemical composition of the emitted pollutants. To investigate these effects, we characterized the emitted particles' chemical composition of three diesel and four gasoline Euro 5 light-duty vehicles tested at a chassis dynamometer facility. The dominant emitted species was black carbon (BC) with emission factors (EFs) varying from 0.2 to 7.1 mg km−1 for direct-injection gasoline (GDI) vehicles, from 0.02 to 0.14 mg km−1 for port fuel injection (PFI) vehicles, and 0.003 to 0.9 mg km−1 for diesel vehicles. The organic matter (OM) EFs varied from 5 to 103 µg km−1 for GDI gasoline vehicles, from 1 to 8 µg km−1 for PFI vehicles, and between 0.15 and 65 µg km−1 for the diesel vehicles. The first minutes of cold-start cycles contributed the largest PM fraction including BC, OM, and polycyclic aromatic hydrocarbons (PAHs). Using a high-resolution time-of-flight mass spectrometer (HR-ToF-AMS), we identified more than 40 PAHs in both diesel and gasoline exhaust particles including methylated, nitro, oxygenated, and amino PAHs. Particle-bound PAHs were 4 times higher for GDI than for PFI vehicles. For two of the three diesel vehicles the PAH emissions were below the detection limit, but for one, which presented an after-treatment device failure, the average PAHs EF was 2.04 µg km−1, similar to the GDI vehicle's values. During the passive regeneration of the catalysed diesel particulate filter (CDPF) vehicle, we measured particles of diameter around 15 nm mainly composed of ammonium bisulfate. Transmission electron microscopy (TEM) images revealed the presence of ubiquitous metal inclusions in soot particles emitted by the diesel vehicle equipped with a fuel-borne-catalyst diesel particulate filter (FBC-DPF). X-ray photoelectron spectroscopy (XPS) analysis of the particles emitted by the PFI vehicle showed the presence of metallic elements and a disordered soot surface with defects that could have consequences on both chemical reactivity and particle toxicity. Our findings show that different after-treatment technologies have an important effect on the emitted particles' levels and their chemical composition. In addition, this work highlights the importance of particle filter devices' condition and performance.


2013 ◽  
Vol 448-453 ◽  
pp. 459-463
Author(s):  
Jun Fu ◽  
Wei Chen ◽  
Yuan Tang

The decision-making and control system of a burner-type diesel particulate filter (DPF) regeneration was designed. Through the online simulation and the application research, it showed that the regeneration system had good response performances on prediction, decision-making, support and control. The DPF regeneration could be rapidly completed in 5-10 minutes and the regeneration efficiency be more than 87%, and the peak temperature and its maximum average grads were in the safe range. The system can realize the efficient, reliable and safe regeneration.


Author(s):  
Amy M. Peterson ◽  
Po-I Lee ◽  
Ming-Chia Lai ◽  
Ming-Cheng Wu ◽  
Craig L. DiMaggio ◽  
...  

This paper compares 20% bio-diesel (B20-choice white grease) fuel with baseline ultra low sulfur diesel (ULSD) fuel on the emissions and performance of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) coupled to a light-duty 4-cylinder 2.8-liter common-rail DI diesel engine. The present paper focuses on the comparison of the fuel effects on loading and active regeneration of the DPF between B20 and ULSD. B20, in general, produces less soot and has lower regeneration temperature compared to soot loaded with ULSD. NO2 concentrations before the DPF were found to be 6% higher with B20, indicating more availability of NO2 to oxidize the soot. Exhaust speciation of the NO2 availability indicates that the slight increase in NOx from B20 is not the dominant cause for the lower temperature regeneration and faster regeneration rate but the reactivity of the soot that is in the DPF. Formaldehyde concentrations are found to be higher with B20 during regeneration due to increased oxygen concentrations in the exhaust stream. Finally the oil dilution effect due to post injection to actively regenerate the DPF is also investigated using a prototype oil sensor and FTIR instrumentation. Utilizing an active regeneration strategy accentuates the possibility of fuel oil dilution of the engine oil. The onboard viscosity oil sensor used was in good agreement with the viscosity bench test and FTIR analysis and provided oil viscosity measurement over the course of the project. Operation with B20 shows significant fuel dilution and needs to be monitored to prevent engine deterioration.


2013 ◽  
Vol 457-458 ◽  
pp. 1245-1248
Author(s):  
Xi Lian Diao

This paper developed a high efficiency, simple to use and reliable, strong practicability of model 6120 diesel particulate filter regeneration control pulse inverse blow system. The pulse counter blowing regeneration test, and post-processing of particles back down to do the further research. The experimental results show that this device can wall honeycomb ceramic filter for filtering and counter blowing regeneration test and research.


Author(s):  
Caneon Kurien ◽  
Ajay Kumar Srivastava ◽  
Deepak Kumar

Development of emission control systems for reducing the toxicity levels of exhaust emissions is one of the major challenges faced by automotive industry which rely on diesel engines owing to its thermal efficiency and service life. The major challenge faced for implementation of emission control system is the periodic regeneration of channels in diesel particulate filter to avoid clogging and backpressure rise inside the substrate. Commercial fuel based regeneration is leading to uncontrolled combustion inside the filter substrate affecting its service life. State of art of the emission control system has been detailed by conducting literature survey on the area and it has been found that these systems have a vital role in reducing emission levels to meet emission norms. Microwave based active regeneration has been proposed in this paper to improve the service life and effectiveness of diesel particulate filter. Three dimensional models of the axial flow, radial flow and cylindrical oxidation catalysis system are developed using Computer Aided Design software and flow analysis has been conducted using Computational Fluid Dynamics software (ANSYS FLUENT). Validation of the geometric design is done using simulation results and the pressure drop across the system is found to be in acceptable range.


Sign in / Sign up

Export Citation Format

Share Document