ceramic filter
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 57)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 6 (7) ◽  
pp. 140-143
Author(s):  
A. S. Grema ◽  
I. M. Idriss ◽  
A. N. Alkali ◽  
M. M. Ahmed ◽  
M. H. Iyodo

The spread of Diseases like Cholera and Diarrhea, which leads to loss of lives in developing countries is commonly caused by use of contaminated water. In this study ceramic pot filters for rural area water purification were developed. The clay sample was tested for physical properties and the mixtures of the clay and sawdust were made in seven (7) proportions of 75/25, 70/30, 65/35, 60/40, 55/45, 50/50, 45/55. The soil tests conducted on the different portions of the clay and sawdust material revealed that the shrinkage of the sawdust blended clay reduced to the minimum of 6.3 compared to the pure clay with 13.7. A fluid dynamic test experiment on each filter was conducted; similarly total dissolved solids (TDS), pH and turbidity tests for both raw water and filtered water were conducted. From fluid dynamic test results, filter 50/50 % tends to have higher filtration rate compared to the other two filters. From the TDS, pH, and turbidity test, the results obtained show that the filtered water quality has fallen within the world health organization (WHO) standard. It can therefore be concluded that the filtered water is safe for consumption.


2021 ◽  
pp. 4-9
Author(s):  
B. L. Krasnyi ◽  
I. G. Zimbovskiy ◽  
U. V. Dmitrakova ◽  
E. D. Chylbak-ool

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7476
Author(s):  
Andrzej Sitka ◽  
Wiesław Jodkowski ◽  
Piotr Szulc ◽  
Daniel Smykowski ◽  
Bogusław Szumiło

This paper presents a study on the application of a ceramic filter in the biomass gasification process and its efficiency in particulate matter removal from the process gas and flue gas. A significant advantage of this type of filter is its high efficiency in small particle removal (<1 µm). This feature allows us to reach the much lower emissions that are required by the applicable standards. The study was performed using an original biomass gasification installation, where conifer scobs were used as feedstock. The installation, its operation and measurement methodology are described in the article. The study included the analysis of process gas and particulate matter, as well as particulate matter content before and after the filter was applied. The measurements indicate that the efficiency of particulate matter removal reaches 99.1%. The analysis of particulate matter in the process gas allowed us to determine that its content was 18.26%, and additionally it was indicated that it contained combustible parts, which undergo combustion in the combustion chamber. It was found that the content of particulate matter is reduced 11 times when compared to the process gas before the filter. An accurate estimation of particulate matter content in flue gas has been also shown for the system without the ceramic filter. As a result, the method allowed us to determine the overall efficiency of particulate matter removal using the ceramic filter, which is equal to 99.9% or 2 mg/m3 (N). The performed study shows that pre-combustion particulate matter removal is preferred over post-combustion particulate matter removal from flue gas. The reason is that the stream of process gas is several times smaller than the flue gas stream, thus the required size of the filter is smaller. Furthermore, process gas filtering allows us to keep the heat transfer surfaces clean, which preserves high thermal efficiency and durability of equipment. The presented results of performed tests are the early stage of the development of the technology of process gas refining in the waste gasification process. The final target is to reach standards similar to those in the case of natural gas.


2021 ◽  
Vol 3 (4) ◽  
pp. 783-796
Author(s):  
Sönke Böckmann ◽  
Igor Titov ◽  
Martina Gerken

Collecting real-time data on physical and chemical parameters of the soil is a prerequisite for resource-efficient and environmentally sustainable agriculture. For continuous in situ measurement of soil nutrients such as nitrate or phosphate, a lab-on-chip approach combined with wireless remote readout is promising. For this purpose, the soil solution, i.e., the water in the soil with nutrients, needs to be extracted into a microfluidic chip. Here, we present a soil-solution extraction unit based on combining a porous ceramic filter with a microfluidic channel with a 12 µL volume. The microfluidic chip was fabricated from polydimethylsiloxane, had a size of 1.7 cm × 1.7 cm × 0.6 cm, and was bonded to a glass substrate. A hydrophilic aluminum oxide ceramic with approximately 37 Vol.-% porosity and an average pore size of 1 µm was integrated at the inlet. Soil water was extracted successfully from three types of soil—silt, garden soil, and sand—by creating suction with a pump at the other end of the microfluidic channel. For garden soil, the extraction rate at approximately 15 Vol.-% soil moisture was 1.4 µL/min. The amount of extracted water was investigated for 30 min pump intervals for the three soil types at different moisture levels. For garden soil and sand, water extraction started at around 10 Vol.-% soil moisture. Silt showed the highest water-holding capacity, with water extraction starting at approximately 13 Vol.-%.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1231
Author(s):  
Grazyna Straczewski ◽  
Robert Mai ◽  
Uta Gerhards ◽  
Krassimir Garbev ◽  
Hans Leibold

Tar in the product gas of biomass gasifiers reduces the efficiency of gasification processes and causes fouling of system components and pipework. Therefore, an efficient tar conversion in the product gas is a key step of effective and reliable syngas production. One of the most promising approaches is the catalytic decomposition of the tar species combined with hot syngas cleaning. The catalyst must be able to convert tar components in the synthesis gas at temperatures of around 700 °C downstream of the gasifier without preheating. A Ni-based doped catalyst with high activity in tar conversion was developed and characterized in detail. An appropriate composition of transition metals was applied to minimize catalyst coking. Precious metals (Pt, Pd, Rh, or a combination of two of them) were added to the catalyst in small quantities. Depending on the hot gas cleaning system used, both transition metals and precious metals were co-impregnated on pellets or on a ceramic filter material. In the case of a pelletized-type catalyst, the hot gas cleaning system revealed a conversion above 80% for 70 and 110 h. The catalyst composed of Ni, Fe, and Cr oxides, promoted with Pt and impregnated on a ceramic fiber filter composed of Al2O3(44%)/SiO2(56%), was the most active catalyst for a compact cleaning system. This catalyst was catalytically active with a naphthalene conversion of around 93% over 95 h without catalyst deactivation.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2799
Author(s):  
Md. Shafiquzzaman ◽  
Saleem S. AlSaleem ◽  
Husnain Haider ◽  
Mohammad T. Alresheedi ◽  
Hussein Thabit

Management of backwash water (BW) generated from sand filtration of groundwater naturally contaminated with iron (Fe), manganese (Mn), and radium (Ra) remains a challenge worldwide. The present study investigated the effectiveness of a low-cost clay ceramic filter for BW recycling along with residual sludge utilization for Ra removal from BW. A 15 day continuous ceramic filtration process operated at a constant flux of 2000 L/m2/d (83 LMH) showed 99% removal of Fe, Mn, and turbidity. The treated BW was found suitable for recycling back to the sand filters. Subsequently, the residual sand filter backwash sludge (BS) was collected, characterized by scanning electron microscopy (SEM) and X-ray diffraction, and examined as a potential adsorbent to the Ra. Results showed that the sludge constituted heterogeneous basic elements, with higher percentages of iron and manganese oxides. The sludge can be classified as typical mesoporous and poorly crystalline minerals consisting primarily of quartz and Mn2O3. Over 60% of Ra from the initial 2.1 bq/L could be removed by sludge in 30 min at neutral pH. The adsorption kinetics of sludge described well by the pseudo-second order model and Ra adsorption on the sludge were mainly controlled by chemisorption rate-controlling steps, intraparticle diffusion, and external mass transfer processes. Treatment of BW by low-cost clay ceramic filters and the utilization the BS for Ra removal would be a sustainable sand filter BW management practice.


2021 ◽  
Vol 21 (9) ◽  
pp. 4964-4967
Author(s):  
Bok-Hyun Oh ◽  
Choong-Hwan Jung ◽  
Heon Kong ◽  
Sang-Jin Lee

A Cu metal-ceramic filter composite with high thermal conductivity and a suitable thermal expansion coefficient was designed to be applied to high performance heat dissipation materials. The purpose of using the ceramic filler was to decrease the high coefficient of thermal expansion of Cu matrix utilizing the high thermal conductivity of Cu. In this study, a SiC ceramic filler powder was added to the Cu sol including Zn as a liquid phase sintering agent. The final complex was produced by applying a PVB polymer to prepare a homogeneous precursor followed by sintering in a reducing atmosphere. The pressureless sintered composite showed lower thermal conductivity than pure bulk Cu due to the some residual pores. In the case of the Cu–SiC composite in which 10 wt% of SiC filler was added, it showed a thermal conductivity of 100 W/m·°C and a thermal expansion coefficient of 13.3×10−6/°C. The thermal conductivity showed some difference from the theoretical calculated value due to the pores in the composite, but the thermal expansion coefficient did not show a significant difference.


Author(s):  
Lin Lang ◽  
Hong-yu Zhu ◽  
Ying-na Ding ◽  
Xiu-li Yin ◽  
Chuang-zhi Wu ◽  
...  

Author(s):  
Adhra Khalfan Al Jahmani ◽  
Lakkimsetty Nageswara Rao ◽  
Varghese M.J. ◽  
Motilal Lakavat ◽  
Feroz Shaik

Sign in / Sign up

Export Citation Format

Share Document